Stefano Colonna

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2391714/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Silicene growth on Ag(110) and Ag(111) substrates reconsidered in light of Si–Ag reactivity. Nanotechnology, 2021, 32, 152001.	2.6	5
2	Demonstration of the Existence of Dumbbell Silicene: A Stable Two-Dimensional Allotrope of Silicon. Journal of Physical Chemistry C, 2021, 125, 17906-17917.	3.1	11
3	High graphene permeability for room temperature silicon deposition: The role of defects. Carbon, 2020, 158, 631-641.	10.3	9
4	Impact of the Substrate Work Function on Self-Assembling and Electronic Structure of Adsorbed Ruthenium Phthalocyanine. Journal of Physical Chemistry C, 2020, 124, 23295-23306.	3.1	4
5	Topologization of \hat{I}^2 -antimonene on Bi2Se3 via proximity effects. Scientific Reports, 2020, 10, 14619.	3.3	17
6	Morphology and Magnetoâ€Transport in Exfoliated Graphene on Ultrathin Crystalline βâ€Si ₃ N ₄ (0001)/Si(111). Advanced Materials Interfaces, 2020, 7, 1902175.	3.7	1
7	Temperature Driven Phase Transition at the Antimonene/Bi ₂ Se ₃ van der Waals Heterostructure. ACS Nano, 2019, 13, 10481-10489.	14.6	45
8	A spectroscopy and microscopy study of silicon nanoclusters grown on β-Si3N4(0â€ ⁻ 0â€ ⁻ 0â€ ⁻ 1)/Si(1â€ ⁻ 1â€ ⁻ 1) ir Applied Surface Science, 2019, 466, 59-62.	iterface. 6.1	2
9	Signature of surface periodicity in the electronic structure of Si(1 1 1)-(7 × 7). Journal of Phy Condensed Matter, 2017, 29, 215001.	sics 1.8	6
10	Unexpected Rotamerism at the Origin of a Chessboard Supramolecular Assembly of Ruthenium Phthalocyanine. Chemistry - A European Journal, 2017, 23, 16319-16327.	3.3	11
11	Ultrafast carrier dynamics, band-gap renormalization, and optical properties of ZnSe nanowires. Physical Review B, 2016, 94, .	3.2	17
12	Self-Assembly of Graphene Nanoblisters Sealed to a Bare Metal Surface. Nano Letters, 2016, 16, 1808-1817.	9.1	36
13	Oxidation of the 8 × 8-reconstructed β-Si3N4(0 0 0 1) surface: A photoemission study. Applied Surface Science, 2015, 355, 93-97.	6.1	8
14	Structure and stability of Si/Ag(110) nanoribbons. Physical Review B, 2015, 92, .	3.2	20
15	Silicon Reactivity at the Ag(111) Surface. Physical Review Letters, 2015, 115, 026102.	7.8	47
16	Raman spectroscopy study of silicon nanoribbons on Ag(110). Applied Physics Letters, 2014, 104, 161612.	3.3	14
17	Silicon-induced faceting at the Ag(110) surface. Physical Review B, 2014, 89, .	3.2	25
18	Supramolecular and Chiral Effects at the Titanyl Phthalocyanine/Ag(100) Hybrid Interface. Journal of Physical Chemistry C, 2014, 118, 5255-5267.	3.1	20

STEFANO COLONNA

#	Article	IF	CITATIONS
19	Organizational chirality expression as a function of the chirality measure of simple amino alcohols on Cu(100). Surface Science, 2014, 629, 41-47.	1.9	5
20	Two-dimensional molecular chirality transfer on metal surfaces. Rendiconti Lincei, 2013, 24, 251-257.	2.2	1
21	Mn-silicide nanostructures aligned on massively parallel silicon nano-ribbons. Journal of Physics Condensed Matter, 2013, 25, 014009.	1.8	10
22	Origin of Dirac-cone-like features in silicon structures on Ag(111) and Ag(110). Journal of Applied Physics, 2013, 114, .	2.5	68
23	Systematic STM and LEED investigation of the Si/Ag(110) surface. Journal of Physics Condensed Matter, 2013, 25, 315301.	1.8	23
24	Chirality Transfer from a Single Chiral Molecule to 2D Superstructures in Alaninol on the Cu(100) Surface. Langmuir, 2011, 27, 7410-7418.	3.5	28
25	Scanning probe microscopy in material science and biology. Journal Physics D: Applied Physics, 2011, 44, 464008.	2.8	10
26	Optical techniques for pump-probe magnetic measurements and nanoimaging of biological samples. Rendiconti Lincei, 2011, 22, 49-57.	2.2	0
27	The role of kinetics on the Mn-induced reconstructions of the GaAs(001) surface. Journal of Applied Physics, 2011, 109, .	2.5	6
28	Supramolecular organization of chiral molecules on metallic surfaces: <scp>D</scp> â€alaninol on Cu(100) as a case study. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 2616-2619.	0.8	6
29	Low temperature STM/STS study of silicon nanowires grown on the Ag(110) surface. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 2716-2719.	0.8	33
30	Detecting and localizing surface dynamics with STM: a study of the Sn/Ge(111) and Sn/Si(111) α-phase surfaces. Journal of Physics Condensed Matter, 2010, 22, 264003.	1.8	8
31	ColonnaetÂal.Reply:. Physical Review Letters, 2009, 102, .	7.8	4
32	First-principles calculations and bias-dependent STM measurements at the α-Sn/Ge(111) surface. Europhysics Letters, 2009, 85, 66001.	2.0	7
33	XPS and STM study of Mn incorporation on the GaAs(001) surface. Superlattices and Microstructures, 2009, 46, 258-265.	3.1	4
34	Adsorption and self-assembly of D-alaninol on Cu(100). Superlattices and Microstructures, 2009, 46, 52-58.	3.1	8
35	Metallic Nature of theî±â^'Sn/Ge(111)Surface down to 2.5ÂK. Physical Review Letters, 2008, 101, 186102	7.8	20
36	Evidence of Sn Adatoms Quantum Tunneling at theαâ^'Sn/Si(111)Surface. Physical Review Letters, 2007, 99, 166103.	7.8	19

STEFANO COLONNA

#	Article	IF	CITATIONS
37	Ferromagnetic–antiferromagnetic Fe/NiO (100) interface studied by non-linear Kerr effect. Surface Science, 2007, 601, 4362-4365.	1.9	4
38	Structure and phase transitions of the Sn/Ge(111) surface. Surface Science, 2007, 601, 4381-4385.	1.9	2
39	Scanning Tunneling Microscopy Observation of a Mott-Insulator Phase at the 1T-TaSe2Surface. Japanese Journal of Applied Physics, 2006, 45, 1950-1952.	1.5	2
40	Low Temperature Scanning Tunneling Microscopy and Scanning Tunneling Spectroscopy Study at the α-Sn/Ge(111) Surface. Japanese Journal of Applied Physics, 2006, 45, 2180-2183.	1.5	2
41	Mott Phase at the Surface of1Tâ^'TaSe2Observed by Scanning Tunneling Microscopy. Physical Review Letters, 2005, 94, 036405.	7.8	43
42	Direct Observation of Sn Adatoms Dynamical Fluctuations at theSn/Ge(111)Surface. Physical Review Letters, 2005, 95, 156101.	7.8	38
43	XAS investigation of tantalum and niobium in nanostructured TiO2 anatase. Journal of Solid State Chemistry, 2004, 177, 1781-1788.	2.9	48
44	XAS characterization and CO oxidation on δ-alumina supported La, Mn, Co and Fe oxides. Physical Chemistry Chemical Physics, 2004, 6, 1350-1358.	2.8	16
45	Differential reflectivity and photoemission study of ZnTe and CdTe (1 1 0) surface. Journal of Alloys and Compounds, 2004, 382, 224-227.	5.5	3
46	In situ Very-High-Energy Diffraction Studies of Thermal Decomposition of Transition Metal Trifluorides ChemInform, 2003, 34, no.	0.0	0
47	Supported rhodium nanoparticles in catalysis: the role of stabilizers on catalytic activity and structural features. Journal of Organometallic Chemistry, 2003, 681, 37-50.	1.8	19
48	In Situ Very-High-Energy Diffraction Studies of Thermal Decomposition of Transition Metal Trifluorides. Bulletin of the Chemical Society of Japan, 2003, 76, 1165-1169.	3.2	3