Hisashi Kokubo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2391642/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Polymer Actuators Using Ion-Gel Electrolytes Prepared by Self-Assembly of ABA-Triblock Copolymers. Macromolecules, 2012, 45, 401-409.	4.8	159
2	Copolymers of Thiophene and Thiazole. Regioregulation in Synthesis, Stacking Structure, and Optical Properties. Macromolecules, 2003, 36, 7986-7993.	4.8	120
3	LCST-type liquid–liquid phase separation behaviour of poly(ethylene oxide) derivatives in an ionic liquid. Chemical Communications, 2008, , 4939.	4.1	109
4	Alignment and Field-Effect Transistor Behavior of an Alternative π-Conjugated Copolymer of Thiophene and 4-Alkylthiazole. Chemistry of Materials, 2004, 16, 4616-4618.	6.7	93
5	Structural effects of polyethers and ionic liquids in their binary mixtures on lower critical solution temperature liquid-liquid phase separation. Polymer Journal, 2011, 43, 242-248.	2.7	79
6	Driving Mechanisms of Ionic Polymer Actuators Having Electric Double Layer Capacitor Structures. Journal of Physical Chemistry B, 2012, 116, 5080-5089.	2.6	79
7	Lower Critical Solution Temperature Phase Behavior of Linear Polymers in Imidazolium-Based Ionic Liquids: Effects of Structural Modifications. Langmuir, 2009, 25, 3820-3824.	3.5	72
8	Printable Polymer Actuators from Ionic Liquid, Soluble Polyimide, and Ubiquitous Carbon Materials. ACS Applied Materials & Interfaces, 2013, 5, 6307-6315.	8.0	63
9	Polymer Electrolytes Containing Solvate Ionic Liquids: A New Approach To Achieve High Ionic Conductivity, Thermal Stability, and a Wide Potential Window. Chemistry of Materials, 2018, 30, 252-261.	6.7	60
10	Controlled Sol–Gel Transitions of a Thermoresponsive Polymer in a Photoswitchable Azobenzene Ionic Liquid as a Molecular Trigger. Angewandte Chemie - International Edition, 2018, 57, 227-230.	13.8	60
11	Photoisomerization-Induced Tunable LCST Phase Separation of Azobenzene-Containing Polymers in an Ionic Liquid. Langmuir, 2009, 25, 8845-8848.	3.5	55
12	Synthesis of a New Thiophene/Quinoxaline CT-Type Copolymer with High Solubility and Its Basic Optical Properties. Macromolecular Rapid Communications, 2003, 24, 440-443.	3.9	54
13	Synthesis of New Thiophene-Based π-Conjugated Polymers for Investigation of Molecular Alignment on the Surface of Platinum Plate. Macromolecules, 2006, 39, 3959-3963.	4.8	54
14	Preparation of New Main-Chain Type Polyanthraquinones. Chemical Reactivity, Packing Structure, Piezochromism, Conductivity, and Liquid Crystalline and Photonic Properties of the Polymers. Chemistry of Materials, 2003, 15, 4384-4393.	6.7	52
15	Tetra-PEG Network Containing Ionic Liquid Synthesized via Michael Addition Reaction and Its Application to Polymer Actuator. Macromolecules, 2017, 50, 2906-2915.	4.8	51
16	Third-order optical nonlinearity in regio-controlled polythiophene films. Applied Physics Letters, 2005, 87, 121902.	3.3	48
17	Molecular alignment of head-to-tail-type poly(3-hexylthiophene-2,5-diyl) and related polymers and compounds on substrates. Journal of Polymer Science, Part B: Polymer Physics, 2001, 39, 1713-1718.	2.1	39
18	lonic polymer actuators using poly(ionic liquid) electrolytes. European Polymer Journal, 2018, 106, 266-272.	5.4	38

Нізазні Кокиво

#	Article	IF	CITATIONS
19	Anionic polymerization of methyl methacrylate in an ionic liquid. Polymers for Advanced Technologies, 2008, 19, 1441-1444.	3.2	37
20	Development of a soft actuator using a photocurable ionic gel. Journal of Micromechanics and Microengineering, 2009, 19, 035005.	2.6	30
21	Photo-healable ion gel with improved mechanical properties using a tetra-arm diblock copolymer containing azobenzene groups. Polymer, 2015, 78, 42-50.	3.8	28
22	Viscoelastic change of block copolymer ion gels in a photo-switchable azobenzene ionic liquid triggered by light. Chemical Communications, 2019, 55, 1710-1713.	4.1	26
23	A Polymer Electrolyte Containing Solvate Ionic Liquid with Increased Mechanical Strength Formed by Self-assembly of ABA-type Ionomer Triblock Copolymer. Electrochimica Acta, 2017, 235, 287-294.	5.2	25
24	Electron-nuclear double-resonance observation of spatial extent of polarons in polythiophene and poly(3-alkylthiophene). Chemical Physics Letters, 2007, 435, 273-277.	2.6	24
25	Photohealable ion gels based on the reversible dimerisation of anthracene. Chemical Communications, 2018, 54, 13371-13374.	4.1	24
26	Thermoreversible Nanogel Shuttle between Ionic Liquid and Aqueous Phases. Langmuir, 2013, 29, 13661-13665.	3.5	23
27	Organometallic Syntheses of Head-to-Head Poly(3-hexylthiophene) and a Related Polymer With a Spacing Non-Substituted Thiophene Unit. Colloidal Solutions of the Polymers. Macromolecular Chemistry and Physics, 2001, 202, 1031-1034.	2.2	22
28	Heteroaromatic and aromatic conjugated polymers synthesized by organometallic coupling — preparation and selected electrochemical properties. Electrochimica Acta, 2005, 50, 1453-1460.	5.2	22
29	From Macromolecular to Smallâ€Molecular Triggers: Facile Method toward Photoinduced LCST Phase Behavior of Thermoresponsive Polymers in Mixed Ionic Liquids Containing an Azobenzene Moiety. Macromolecular Rapid Communications, 2016, 37, 1960-1965.	3.9	20
30	Transport and Mechanical Properties of ABA-type Triblock Copolymer Ion Gels Correlated with Their Microstructures. Macromolecules, 2019, 52, 8430-8439.	4.8	20
31	Photocurable ABA triblock copolymer-based ion gels utilizing photodimerization of coumarin. RSC Advances, 2018, 8, 3418-3422.	3.6	19
32	Photo/thermoresponsive ABC triblock copolymer-based ion gels: photoinduced structural transitions. Soft Matter, 2018, 14, 9088-9095.	2.7	18
33	Third-order optical nonlinearity in charge-transfer-type conjugated polymers. Physical Review B, 2004, 70, .	3.2	17
34	Thermosensitive Phase Separation Behavior of Poly(benzyl methacrylate)/Solvate Ionic Liquid Solutions. Langmuir, 2017, 33, 14105-14114.	3.5	17
35	Polymer electrolytes based on a homogeneous poly(ethylene glycol) network and their application to polymer actuators. Electrochimica Acta, 2019, 298, 866-873.	5.2	16
36	Effects of Carbon Electrode Materials on Performance of Ionic Polymer Actuators Having Electric Double-Layer Capacitor Structure. Electrochemistry, 2013, 81, 849-852.	1.4	15

Нізазні Кокиво

#	Article	IF	CITATIONS
37	Physicochemical Characterization of a Photoinduced Sol–Gel Transition of an Azobenzene-Containing ABA Triblock Copolymer/Ionic Liquid System. Macromolecules, 2017, 50, 6788-6795.	4.8	15
38	Micellization/Demicellization Self-Assembly Change of ABA Triblock Copolymers Induced by a Photoswitchable Ionic Liquid with a Small Molecular Trigger. Macromolecules, 2017, 50, 5377-5384.	4.8	14
39	Microphase-separated structures of ion gels consisting of ABA-type block copolymers and an ionic liquid: A key to escape from the trade-off between mechanical and transport properties. Polymer, 2020, 206, 122849.	3.8	14
40	Effect of network homogeneity on mechanical, thermal and electrochemical properties of solid polymer electrolytes prepared by homogeneous 4-arm poly(ethylene glycols). Soft Matter, 2020, 16, 4290-4298.	2.7	14
41	Continuous control of third-order optical nonlinearity in charge-transfer-type conjugated polymers. Applied Physics Letters, 2008, 92, .	3.3	13
42	Electrochemical behavior of poly(3-hexylthiophene). Controlling factors of electric current in electricc urrent in electrochemical oxidation of poly(3-hexylthiophene)s in a solution. Polymer, 2004, 45, 1735-1738.	3.8	12
43	Controlled Sol–Gel Transitions of a Thermoresponsive Polymer in a Photoswitchable Azobenzene Ionic Liquid as a Molecular Trigger. Angewandte Chemie, 2018, 130, 233-236.	2.0	12
44	?-conjugated polymers prepared by organometallic polycondensation and metal complexes of the polymers. Polymers for Advanced Technologies, 2000, 11, 658-664.	3.2	11
45	Molecular Alignment of Neutral and p-Doped Head-to-Tail Type Poly(3-hexylthiophene-2,5-diyl) and n -Alkanes on the Surface of Substrates. Molecular Crystals and Liquid Crystals, 2002, 381, 113-119.	0.9	11
46	Purification of Head-to-Tail-Type Regioregular Poly(3-hexylthiophene), HT-P3HexTh, and Investigation of the Effects of Polymer Purity on the Performance of Organic Field-Effect Transistors. Japanese Journal of Applied Physics, 2003, 42, 6627-6628.	1.5	11
47	Molecular Alignment ofn-Alkanes and Head-to-Tail-Type Poly(3-Alkylthiophene) on Substrates: Study with Films Prepared by Casting and Vacuum Deposition. Molecular Crystals and Liquid Crystals, 2005, 432, 83-100.	0.9	11
48	Selfâ€Assembly of Polyether Diblock Copolymers in Water and Ionic Liquids. Macromolecular Rapid Communications, 2016, 37, 1207-1211.	3.9	11
49	Two-photon excited states in charge-transfer type conjugated polymers. Synthetic Metals, 2009, 159, 868-870.	3.9	9
50	Electrochemical Deposition of Films of p-Doped Regioregular Poly(3-hexylthiophene-2,5-diyl). Chemistry Letters, 1999, 28, 1295-1296.	1.3	8
51	Selective stacking of HT-poly(3-n-alkylthiophene-2,5-diyl)s in mixed systems. Journal of Polymer Science, Part B: Polymer Physics, 2000, 38, 84-87.	2.1	8
52	Alternating copolymer based on sulfonamideâ€substituted phenylmaleimide and vinyl monomers as polymer electrolyte membrane. Journal of Polymer Science Part A, 2013, 51, 2233-2242.	2.3	8
53	Temperature and light-induced self-assembly changes of a tetra-arm diblock copolymer in an ionic liquid. Polymer Journal, 2015, 47, 739-746.	2.7	8
54	Synthesis of 3-Alkynyl-2,5-dibromothiophene and 3,3′-Dialkynyl-5,5′-dibromo-2,2′-bithiophene as the Starting Compounds for π-Conjugated Polymer. Bulletin of the Chemical Society of Japan, 2005, 78, 1368-1370.	3.2	7

Нізазні Кокиво

#	Article	IF	CITATIONS
55	Specific Charge Transport in Ionic Liquids and Ion Gels and the Importance in Material Science. Kobunshi Ronbunshu, 2006, 63, 31-40.	0.2	7
56	Electrochemical Deposition of Regioregular Head-to-Tail Poly(3-hexylthiophene-2,5-diyl) and Characterization of the Obtained Film. Japanese Journal of Applied Physics, 2001, 40, L228-L230.	1.5	6
57	Effect of core-shell micelle formation on the redox properties of phenothiazine-labeled poly(ethyl) Tj ETQq1 1 0.78	34314 rgl 5.0	3T /Overlock
58	Comparison of the organometallic copolymerizations of thiophene with 4-alkylthiazole and 3-alkylthiophene: The control of regioregularity in the copolymerization with 4-alkylthiazole. Journal of Polymer Science Part A, 2003, 41, 1449-1453.	2.3	5
59	Third-order nonlinear optical spectroscopy in charge-transfer type conjugated polymers. Synthetic Metals, 2005, 153, 141-144.	3.9	4
60	Solid polymer electrolytes based on polystyreneâ€polyether block copolymers having branched ether structure. Polymers for Advanced Technologies, 2018, 30, 736.	3.2	4
61	Direct Observation of Photoâ€Induced Reversible Sol–Gel Transition in Block Copolymer Selfâ€Assembly Containing an Azobenzene Ionic Liquid. Macromolecular Rapid Communications, 2021, 42, e2100091.	3.9	4
62	Preparation, structure and conduction properties of SeCN-containing mixed anion TTF conductors. Journal of Materials Chemistry, 2001, 11, 2192-2198.	6.7	3
63	Ion Gels for Ionic Polymer Actuators. , 2014, , 141-156.		3
64	Preparation and properties of mixed anion TTF conductors. Synthetic Metals, 1999, 103, 2138-2139.	3.9	2
65	Solvation Structure of Poly(benzyl methacrylate) in a Solvate Ionic Liquid: Preferential Solvation of Li–Glyme Complex Cation. Journal of Physical Chemistry B, 2019, 123, 4098-4107.	2.6	2
66	π-Conjugated Polymers, (Th(R)–CH=CH–Th(R)) <i>n</i> (Th(R) = 3-Alkylthiophene-2,5-diyl; R = Octyl,) Tj ETQo Society of Japan, 2011, 84, 1291-1293.	q0 0 0 rgl 3.2	BT /Overlock 1
67	Development of a Polymer Actuator Utilizing Ion-Gel as Electrolyte. , 2010, , 315-328.		1
68	Synthesis of 3-Alkynyl-2,5-dibromothiophene (IV) and 3,3′-Dialkynyl-5,5′-dibromo-2,2′-bithiophene (VII) a the Starting Compounds for π-Conjugated Polymer ChemInform, 2005, 36, no.	^{\$} 0.0	0
69	Development of microactuators using photopatternable ionic gel. , 2008, , .		0
70	Cluster–Micelle Transition of a Thermo- and Photoresponsive ABC Triblock Copolymer in an Ionic Liquid. Australian Journal of Chemistry, 2019, 72, 155.	0.9	0
71	Synthesis, mechanical properties, and ionic conductivity of rotaxane cross-linked polymers. Polymer, 2021, 227, 123844.	3.8	Ο

72 Ion Gels for Ionic Polymer Actuators. , 2019, , 217-232.