
Takashi Akagi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2391444/publications.pdf Version: 2024-02-01

Τλέλομι Δέλοι

#	Article	IF	CITATIONS
1	A Y-chromosome–encoded small RNA acts as a sex determinant in persimmons. Science, 2014, 346, 646-650.	6.0	330
2	Functional and Expressional Analyses of <i>PmDAM</i> Genes Associated with Endodormancy in Japanese Apricot. Plant Physiology, 2011, 157, 485-497.	2.3	219
3	DkMyb4 Is a Myb Transcription Factor Involved in Proanthocyanidin Biosynthesis in Persimmon Fruit. Plant Physiology, 2009, 151, 2028-2045.	2.3	193
4	A Y-Encoded Suppressor of Feminization Arose via Lineage-Specific Duplication of a Cytokinin Response Regulator in Kiwifruit. Plant Cell, 2018, 30, 780-795.	3.1	151
5	Two Y-chromosome-encoded genes determine sex in kiwifruit. Nature Plants, 2019, 5, 801-809.	4.7	148
6	Expression balances of structural genes in shikimate and flavonoid biosynthesis cause a difference in proanthocyanidin accumulation in persimmon (Diospyros kaki Thunb.) fruit. Planta, 2009, 230, 899-915.	1.6	108
7	Antagonistic regulation of the gibberellic acid response during stem growth in rice. Nature, 2020, 584, 109-114.	13.7	98
8	Epigenetic Regulation of the Sex Determination Gene <i>MeGI</i> in Polyploid Persimmon. Plant Cell, 2016, 28, 2905-2915.	3.1	97
9	Proanthocyanidin biosynthesis of persimmon (Diospyros kaki Thunb.) fruit. Scientia Horticulturae, 2011, 130, 373-380.	1.7	95
10	DkMyb2 wound-induced transcription factor of persimmon (Diospyros kaki Thunb.), contributes to proanthocyanidin regulation. Planta, 2010, 232, 1045-1059.	1.6	81
11	One Hundred Ways to Invent the Sexes: Theoretical and Observed Paths to Dioecy in Plants. Annual Review of Plant Biology, 2018, 69, 553-575.	8.6	78
12	Seasonal Abscisic Acid Signal and a Basic Leucine Zipper Transcription Factor, DkbZIP5, Regulate Proanthocyanidin Biosynthesis in Persimmon Fruit À Â. Plant Physiology, 2012, 158, 1089-1102.	2.3	66
13	Genome-wide view of genetic diversity reveals paths of selection and cultivar differentiation in peach domestication. DNA Research, 2016, 23, 271-282.	1.5	64
14	The persimmon genome reveals clues to the evolution of a lineage-specific sex determination system in plants. PLoS Genetics, 2020, 16, e1008566.	1.5	54
15	Quantitative characterization of fruit shape and its differentiation pattern in diverse persimmon (Diospyros kaki) cultivars. Scientia Horticulturae, 2018, 228, 41-48.	1.7	53
16	Evolution and diversification of the plant gibberellin receptor GID1. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7844-E7853.	3.3	51
17	Molecular identification of 1-Cys peroxiredoxin and anthocyanidin/flavonol 3-O-galactosyltransferase from proanthocyanidin-rich young fruits of persimmon (Diospyros kaki) Tj ETQq1 1	0.78 43 đ 4 rg	;BT4Øverlock
18	Gene networks orchestrated by <i>Me<scp>GI</scp></i> : a singleâ€factor mechanism underlying sex determination in persimmon. Plant Journal, 2019, 98, 97-111.	2.8	47

ΤΑΚΑSΗΙ ΑΚΑGΙ

#	Article	IF	CITATIONS
19	Genome Re-Sequencing of Diverse Sweet Cherry (Prunus avium) Individuals Reveals a Modifier Gene Mutation Conferring Pollen-Part Self-Compatibility. Plant and Cell Physiology, 2018, 59, 1265-1275.	1.5	37

SCAR Markers for Practical Application of Marker-assisted Selection in Persimmon (Diospyros kaki) Tj ETQq0 0 0 rg $_{0.8}^{\text{BT}}$ /Overlock 10 Tf 50

21	Insights into the <i>Prunus</i> -Specific S-RNase-Based Self-Incompatibility System from a Genome-Wide Analysis of the Evolutionary Radiation of <i>S</i> Locus-Related F-box Genes. Plant and Cell Physiology, 2016, 57, 1281-1294.	1.5	32
22	Condensed Tannin Composition Analysis in Persimmon (Diospyros kaki Thunb.) Fruit by Acid Catalysis in the Presence of Excess Phloroglucinol. Japanese Society for Horticultural Science, 2010, 79, 275-281.	0.8	30
23	Development of Molecular Markers Associated with Sexuality in Diospyros lotus L. and Their Application in D. kaki Thunb Japanese Society for Horticultural Science, 2014, 83, 214-221.	0.8	29
24	<i>Shy Girl</i> , a kiwifruit suppressor of feminization, restricts gynoecium development via regulation of cytokinin metabolism and signalling. New Phytologist, 2021, 230, 1461-1475.	3.5	29
25	Pleiotropic effects of sex-determining genes in the evolution of dioecy in two plant species. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20191805.	1.2	28
26	Low temperature modulates natural peel degreening in lemon fruit independently of endogenous ethylene. Journal of Experimental Botany, 2020, 71, 4778-4796.	2.4	26
27	Fine genotyping of a highly polymorphic ASTRINGENCY-linked locus reveals variable hexasomic inheritance in persimmon (Diospyros kaki Thunb.) cultivars. Tree Genetics and Genomes, 2012, 8, 195-204.	0.6	25
28	Quantitative Genotyping for the Astringency Locus in Hexaploid Persimmon Cultivars using Quantitative Real-time PCR. Journal of the American Society for Horticultural Science, 2010, 135, 59-66.	0.5	25
29	Effects of seasonal temperature changes on DkMyb4 expression involved in proanthocyanidin regulation in two genotypes of persimmon (Diospyros kaki Thunb.) fruit. Planta, 2011, 233, 883-894.	1.6	24
30	Evolutionary Analysis of Genes for S-RNase-based Self-incompatibility Reveals <i>S</i> Locus Duplications in the Ancestral Rosaceae. Horticulture Journal, 2015, 84, 233-242.	0.3	24
31	Quantitative real-time PCR to determine allele number for the astringency locus by analysis of a linked marker in Diospyros kaki Thunb. Tree Genetics and Genomes, 2009, 5, 483-492.	0.6	21
32	A male determinant gene in diploid dioecious Diospyros, OGI, is required for male flower production in monoecious individuals of Oriental persimmon (D. kaki). Scientia Horticulturae, 2016, 213, 243-251.	1.7	21
33	The effect of layer-by-layer edible coating on the shelf life and transcriptome of â€~Kosui' Japanese pear fruit. Postharvest Biology and Technology, 2022, 185, 111787.	2.9	21
34	Reinvention of hermaphroditism via activation of a RADIALIS-like gene in hexaploid persimmon. Nature Plants, 2022, 8, 217-224.	4.7	21
35	Development of Molecular Markers Linked to the Allele Associated with the Non-astringent Trait of the Chinese Persimmon (Diospyros kaki Thunb.). Japanese Society for Horticultural Science, 2011, 80, 150-155.	0.8	19
36	â€~Passe Crassane' pear fruit (Pyrus communis L.) ripening: Revisiting the role of low temperature via integrated physiological and transcriptome analysis. Postharvest Biology and Technology, 2019, 158, 110949.	2.9	18

Τακάση Ακάσι

#	Article	IF	CITATIONS
37	Characterization of post-mating interspecific cross-compatibility in Prunus (Rosaceae). Scientia Horticulturae, 2019, 246, 693-699.	1.7	17
38	Evolution of Lineage-Specific Gene Networks Underlying the Considerable Fruit Shape Diversity in Persimmon. Plant and Cell Physiology, 2019, 60, 2464-2477.	1.5	16
39	Interspecific introgression and natural selection in the evolution of Japanese apricot (<i>Prunus) Tj ETQq1 1 0.784</i>	314 rgBT 2.8	/Qyerlock
40	Explainable Deep Learning Reproduces a â€ [~] Professional Eye' on the Diagnosis of Internal Disorders in Persimmon Fruit. Plant and Cell Physiology, 2020, 61, 1967-1973.	1.5	14
41	Epigenetic Flexibility Underlies Somaclonal Sex Conversions in Hexaploid Persimmon. Plant and Cell Physiology, 2020, 61, 393-402.	1.5	12
42	Noninvasive Diagnosis of Seedless Fruit Using Deep Learning in Persimmon. Horticulture Journal, 2021, 90, 172-180.	0.3	10
43	Genome-wide cis-decoding for expression design in tomato using cistrome data and explainable deep learning. Plant Cell, 2022, 34, 2174-2187.	3.1	10
44	Detection of a novel locus involved in non-seed-shattering behaviour of Japonica rice cultivar, Oryzasativa â€~Nipponbare'. Theoretical and Applied Genetics, 2019, 132, 2615-2623.	1.8	8
45	Molecular Mechanism Underlying Derepressed Male Production in Hexaploid Persimmon. Frontiers in Plant Science, 2020, 11, 567249.	1.7	8
46	Genome-wide study on the polysomic genetic factors conferring plasticity of flower sexuality in hexaploid persimmon. DNA Research, 2020, 27, .	1.5	8
47	The Relationship Between a Maleness-associated Region in <i>Diospyros lotus</i> L. and Maleness of Persimmon (<i>D. kaki</i> Thunb.) Cultivars. Horticultural Research (Japan), 2015, 14, 121-126.	0.1	7
48	Examining the Role of Low Temperature in Satsuma Mandarin Fruit Peel Degreening via Comparative Physiological and Transcriptomic Analysis. Frontiers in Plant Science, 0, 13, .	1.7	6
49	Evolutionary alterations in gene expression and enzymatic activities of gibberellin 3-oxidase 1 in Oryza. Communications Biology, 2022, 5, 67.	2.0	4