
Tak-Sing Wong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/239038/publications.pdf Version: 2024-02-01

TAK-SING WONG

#	Article	IF	CITATIONS
1	Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature, 2011, 477, 443-447.	13.7	3,165
2	Liquid-Infused Nanostructured Surfaces with Extreme Anti-Ice and Anti-Frost Performance. ACS Nano, 2012, 6, 6569-6577.	7.3	1,118
3	Liquid-infused structured surfaces with exceptional anti-biofouling performance. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13182-13187.	3.3	783
4	Ultrasensitive surface-enhanced Raman scattering detection in common fluids. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 268-273.	3.3	591
5	Adaptive fluid-infused porous films with tunable transparency and wettability. Nature Materials, 2013, 12, 529-534.	13.3	481
6	Hydrophilic directional slippery rough surfaces for water harvesting. Science Advances, 2018, 4, eaaq0919.	4.7	386
7	Transparency and damage tolerance of patternable omniphobic lubricated surfaces based on inverse colloidal monolayers. Nature Communications, 2013, 4, 2167.	5.8	339
8	Minimal Size of Coffee Ring Structure. Journal of Physical Chemistry B, 2010, 114, 5269-5274.	1.2	306
9	Nanochromatography Driven by the Coffee Ring Effect. Analytical Chemistry, 2011, 83, 1871-1873.	3.2	277
10	Liquid-Infused Silicone As a Biofouling-Free Medical Material. ACS Biomaterials Science and Engineering, 2015, 1, 43-51.	2.6	235
11	Multifunctional ferrofluid-infused surfaces with reconfigurable multiscale topography. Nature, 2018, 559, 77-82.	13.7	229
12	Slippery Wenzel State. ACS Nano, 2015, 9, 9260-9267.	7.3	207
13	A Switchable Cross‧pecies Liquid Repellent Surface. Advanced Materials, 2017, 29, 1604641.	11.1	186
14	Interfacial materials with special wettability. MRS Bulletin, 2013, 38, 366-371.	1.7	137
15	Lubricant-infused micro/nano-structured surfaces with tunable dynamic omniphobicity at high temperatures. Applied Physics Letters, 2013, 102, .	1.5	127
16	Dielectrophoretic Batch Fabrication of Bundled Carbon Nanotube Thermal Sensors. IEEE Nanotechnology Magazine, 2004, 3, 395-403.	1.1	108
17	Dependence of Macroscopic Wetting on Nanoscopic Surface Textures. Langmuir, 2009, 25, 12851-12854.	1.6	105
18	Ultra-antireflective synthetic brochosomes. Nature Communications, 2017, 8, 1285.	5.8	101

Tak-Sing Wong

#	Article	IF	CITATIONS
19	Fabrics coated with lubricated nanostructures display robust omniphobicity. Nanotechnology, 2014, 25, 014019.	1.3	86
20	Bioinspired Omniphobic Coatings with a Thermal Self-Repair Function on Industrial Materials. ACS Applied Materials & Interfaces, 2016, 8, 8265-8271.	4.0	83
21	Viscoelastic solid-repellent coatings for extreme water saving and global sanitation. Nature Sustainability, 2019, 2, 1097-1105.	11.5	77
22	Compact nanoscale textures reduce contact time of bouncing droplets. Science Advances, 2020, 6, eabb2307.	4.7	46
23	Free-standing liquid membranes as unusual particle separators. Science Advances, 2018, 4, eaat3276.	4.7	29
24	SLIPS-LAB—A bioinspired bioanalysis system for metabolic evaluation of urinary stone disease. Science Advances, 2020, 6, eaba8535.	4.7	26
25	Surface initiated actin polymerization from top-down manufactured nanopatterns. Soft Matter, 2007, 3, 541.	1.2	24
26	Formation of high electromagnetic gradients through a particle-based microfluidic approach. Journal of Micromechanics and Microengineering, 2007, 17, 1299-1306.	1.5	23
27	Wetting Behaviors of Individual Nanostructures. Langmuir, 2009, 25, 6599-6603.	1.6	23
28	Creation of functional micro/nano systems through top-down and bottom-up approaches. MCB Molecular and Cellular Biomechanics, 2009, 6, 1-55.	0.3	19
29	Towards batch fabrication of bundled carbon nanotube thermal sensors. , 0, , .		15
30	Development of an automated microspotting system for rapid dielectrophoretic fabrication of bundled carbon nanotube sensors. IEEE Transactions on Automation Science and Engineering, 2006, 3, 218-227.	3.4	15
31	Silicone polymer chemical vapor sensors fabricated by direct polymer patterning on substrate technique (DPPOST). Sensors and Actuators B: Chemical, 2006, 116, 2-10.	4.0	14
32	DEPENDENCE OF AC ELECTROPHORESIS CARBON NANOTUBE MANIPULATION ON MICROELECTRODE GEOMETRY. International Journal of Nonlinear Sciences and Numerical Simulation, 2002, 3, .	0.4	12
33	SU-8 lift-off patterned silicone chemical vapor sensor arrays. , 0, , .		5
34	Conductive silicone based MEMS sensor and actuator. , 0, , .		1
35	Designing Nature-Inspired Liquid-Repellent Surfaces. , 2020, , 300-319.		1
36	Manufacture of nanoscale structures through integrated top-down and bottom-up approaches. , 2007, , .		0

3