Odessa R Yabut

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2390109/publications.pdf

Version: 2024-02-01

16 papers	819 citations	933447 10 h-index	940533 16 g-index
19	19	19	1230 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	The Neocortical Progenitor Specification Program Is Established through Combined Modulation of SHH and FGF Signaling. Journal of Neuroscience, 2020, 40, 6872-6887.	3.6	17
2	Cortical distribution of GABAergic interneurons is determined by migration time and brain size. Development (Cambridge), 2020, 147, .	2.5	10
3	Suppressor of Fused regulates the proliferation of postnatal neural stem and precursor cells via a Gli3-dependent mechanism. Biology Open, 2019, 8, .	1.2	7
4	Sonic Hedgehog Signaling Rises to the Surface: Emerging Roles in Neocortical Development. Brain Plasticity, 2018, 3, 119-128.	3. 5	31
5	The Dorsal Wave of Neocortical Oligodendrogenesis Begins Embryonically and Requires Multiple Sources of Sonic Hedgehog. Journal of Neuroscience, 2018, 38, 5237-5250.	3.6	74
6	Loss of Suppressor of Fused in Mid-Corticogenesis Leads to the Expansion of Intermediate Progenitors. Journal of Developmental Biology, 2016, 4, 29.	1.7	8
7	The Crossroads of Neural Stem Cell Development and Tumorigenesis. Opera Medica Et Physiologica, 2016, 2, 181-187.	1.0	7
8	Suppressor of Fused Is Critical for Maintenance of Neuronal Progenitor Identity during Corticogenesis. Cell Reports, 2015, 12, 2021-2034.	6.4	39
9	A Notch above Sonic Hedgehog. Developmental Cell, 2015, 33, 371-372.	7.0	7
10	The Quintessence of Quiescence. Neuron, 2014, 82, 501-503.	8.1	2
11	miR-125b Promotes Early Germ Layer Specification through Lin28/let-7d and Preferential Differentiation of Mesoderm in Human Embryonic Stem Cells. PLoS ONE, 2012, 7, e36121.	2.5	44
12	The promise of human embryonic stem cells in aging-associated diseases. Aging, 2011, 3, 494-508.	3.1	35
13	Dyrk1A Overexpression Inhibits Proliferation and Induces Premature Neuronal Differentiation of Neural Progenitor Cells. Journal of Neuroscience, 2010, 30, 4004-4014.	3.6	132
14	Cdk5 Suppresses the Neuronal Cell Cycle by Disrupting the E2F1–DP1 Complex. Journal of Neuroscience, 2010, 30, 5219-5228.	3.6	100
15	The Reelin Signaling Pathway Promotes Dendritic Spine Development in Hippocampal Neurons. Journal of Neuroscience, 2008, 28, 10339-10348.	3.6	246
16	Abnormal laminar position and dendrite development of interneurons in the reeler forebrain. Brain Research, 2007, 1140, 75-83.	2.2	58