Xuejun Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2389681/publications.pdf

Version: 2024-02-01

		136950	189892
88	2,983	32	50
papers	citations	h-index	g-index
93	93	93	2938
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Characteristics of plankton Hg bioaccumulations based on a global data set and the implications for aquatic systems with aggravating nutrient imbalance. Frontiers of Environmental Science and Engineering, 2022, 16, 1.	6.0	8
2	On-site measured emission factors of polycyclic aromatic hydrocarbons for different types of marine vessels. Environmental Pollution, 2022, 297, 118782.	7.5	9
3	Rapid Increase in China's Industrial Ammonia Emissions: Evidence from Unit-Based Mapping. Environmental Science & Technology, 2022, 56, 3375-3385.	10.0	20
4	Impact of dissolved organic matter and environmental factors on methylmercury concentrations across aquatic ecosystems inferred from a global dataset. Chemosphere, 2022, 294, 133713.	8.2	9
5	Increasing mercury risk of fly ash generated from coal-fired power plants in China. Journal of Hazardous Materials, 2022, 429, 128296.	12.4	15
6	High PM _{2.5} Emission from Typical Old, Small Fishing Vessels in China. Environmental Science and Technology Letters, 2022, 9, 199-204.	8.7	3
7	First observation of mercury species on an important water vapor channel in the southeastern Tibetan Plateau. Atmospheric Chemistry and Physics, 2022, 22, 2651-2668.	4.9	8
8	Transport of mercury in a regulated high-sediment river and its input to marginal seas. Water Research, 2022, 214, 118211.	11.3	18
9	Estimation of Unintended Treated Wastewater Contributions to Streams in the Yangtze River Basin and the Potential Human Health and Ecological Risk Analysis. Environmental Science & Eamp; Technology, 2022, 56, 5590-5601.	10.0	10
10	Unexpected Methane Emissions From Old Small Fishing Vessels in China. Frontiers in Environmental Science, 2022, 10 , .	3.3	0
11	Characteristics of CO2 and atmospheric pollutant emissions from China's cement industry: A life-cycle perspective. Journal of Cleaner Production, 2021, 282, 124533.	9.3	45
12	A potential route for photolytic reduction of HgCl2 and HgBr2 in dry air and analysis about the impacts from Ozone. Atmospheric Research, 2021, 249, 105310.	4.1	4
13	Human Methylmercury Exposure and Potential Impacts in Central Tibet: Food and Traditional Tibetan Medicine. Bulletin of Environmental Contamination and Toxicology, 2021, 107, 449-458.	2.7	2
14	Mercury and methylmercury in China's lake sediments and first estimation of mercury burial fluxes. Science of the Total Environment, 2021, 770, 145338.	8.0	12
15	Spatial-temporal characteristics of mercury and methylmercury in marine sediment under the combined influences of river input and coastal currents. Chemosphere, 2021, 274, 129728.	8.2	14
16	Rivers as the largest source of mercury to coastal oceans worldwide. Nature Geoscience, 2021, 14, 672-677.	12.9	107
17	Biotransport of mercury and human methylmercury exposure through crabs in China – A life cycle-based analysis. Journal of Hazardous Materials, 2021, 415, 125684.	12.4	2
18	Observation-Based Mercury Export from Rivers to Coastal Oceans in East Asia. Environmental Science & East Residue (1988), 2021, 55, 14269-14280.	10.0	15

#	Article	IF	CITATIONS
19	Influence of atmospheric in-cloud aqueous-phase chemistry on the global simulation of SO ₂ in CESM2. Atmospheric Chemistry and Physics, 2021, 21, 16093-16120.	4.9	10
20	Substantial accumulation of mercury in the deepest parts of the ocean and implications for the environmental mercury cycle. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	15
21	A WRF-Chem model-based future vehicle emission control policy simulation and assessment for the Beijing-Tianjin-Hebei region, China. Journal of Environmental Management, 2020, 253, 109751.	7.8	35
22	Significant elevation of human methylmercury exposure induced by the food trade in Beijing, a developing megacity. Environment International, 2020, 135, 105392.	10.0	11
23	The impact of the Three Gorges Dam on the fate of metal contaminants across the river–ocean continuum. Water Research, 2020, 185, 116295.	11.3	36
24	Rapid Increase in Cement-Related Mercury Emissions and Deposition in China during 2005–2015. Environmental Science & Enviro	10.0	11
25	Dissolved Black Carbon Facilitates Photoreduction of Hg(II) to Hg(0) and Reduces Mercury Uptake by Lettuce (<i>Lactuca sativa</i> L.). Environmental Science & Eamp; Technology, 2020, 54, 11137-11145.	10.0	46
26	Establishment of High-Resolution Atmospheric Mercury Emission Inventories for Chinese Cement Plants Based on the Mass Balance Method. Environmental Science & Echnology, 2020, 54, 13399-13408.	10.0	22
27	Improvement in municipal wastewater treatment alters lake nitrogen to phosphorus ratios in populated regions. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11566-11572.	7.1	141
28	Methylmercury Bioaccumulation in Deepest Ocean Fauna: Implications for Ocean Mercury Biotransport through Food Webs. Environmental Science and Technology Letters, 2020, 7, 469-476.	8.7	23
29	Occurrence and Fate of Heavy Metals in Municipal Wastewater in Heilongjiang Province, China: A Monthly Reconnaissance from 2015 to 2017. Water (Switzerland), 2020, 12, 728.	2.7	24
30	Impacts of Potential China's Environmental Protection Tax Reforms on Provincial Air Pollution Emissions and Economy. Earth's Future, 2020, 8, e2019EF001467.	6.3	15
31	Simulation of the impact of the emergency control measures on the reduction of air pollutants: a case study of APEC blue. Environmental Monitoring and Assessment, 2020, 192, 116.	2.7	7
32	Control of both PM2.5 and O3 in Beijing-Tianjin-Hebei and the surrounding areas. Atmospheric Environment, 2020, 224, 117259.	4.1	63
33	Impacts of water residence time on nitrogen budget of lakes and reservoirs. Science of the Total Environment, 2019, 646, 75-83.	8.0	44
34	An experimental study of the impacts of solar radiation and temperature on mercury emission from different natural soils across China. Environmental Monitoring and Assessment, 2019, 191, 545.	2.7	2
35	Evolution of the life cycle primary PM2.5 emissions in globalized production systems. Environment International, 2019, 131, 104996.	10.0	14
36	Seasonal Pattern of Nutrient Limitation in a Eutrophic Lake and Quantitative Analysis of the Impacts from Internal Nutrient Cycling. Environmental Science & Environmental Science & 2019, 53, 13675-13686.	10.0	70

#	Article	IF	CITATIONS
37	Reply to Comment on "Traditional Tibetan Medicine Induced High Methylmercury Exposure Level and Environmental Mercury Burden in Tibet, China― Environmental Science & Technology, 2019, 53, 12956-12958.	10.0	0
38	Sources and transport of methylmercury in the Yangtze River and the impact of the Three Gorges Dam. Water Research, 2019, 166, 115042.	11.3	36
39	PM _{2.5} -Associated Health Impacts of Beehive Coke Oven Ban in China. Environmental Science &	10.0	4
40	First measurement of atmospheric mercury species in Qomolangma Natural Nature Preserve, Tibetan Plateau, and evidence oftransboundary pollutant invasion. Atmospheric Chemistry and Physics, 2019, 19, 1373-1391.	4.9	23
41	Tracing the Uncertain Chinese Mercury Footprint within the Global Supply Chain Using a Stochastic, Nested Input–Output Model. Environmental Science & Technology, 2019, 53, 6814-6823.	10.0	18
42	The impact of environmental protection tax on sectoral and spatial distribution of air pollution emissions in China. Environmental Research Letters, 2019, 14, 054013.	5.2	41
43	Characteristics of Speciated Mercury Emissions from Coal Combustion in Air and Oxygen-Enriched Environment. Bulletin of Environmental Contamination and Toxicology, 2019, 102, 695-700.	2.7	3
44	Ecological risk assessment of the increasing use of the neonicotinoid insecticides along the east coast of China. Environment International, 2019, 127, 550-557.	10.0	90
45	Rapid Increase in the Lateral Transport of Trace Elements Induced by Soil Erosion in Major Karst Regions in China. Environmental Science & Technology, 2019, 53, 4206-4214.	10.0	27
46	Trans-provincial health impacts of atmospheric mercury emissions in China. Nature Communications, 2019, 10, 1484.	12.8	126
47	Determination of methylmercury in rice using microwave-assisted extraction coupled with thermal decomposition amalgamation atomic absorption spectrometry (MAE-TDA-AAS). Analytical Methods, 2019, 11, 1361-1370.	2.7	7
48	Resolution of the Ongoing Challenge of Estimating Nonpoint Source Neonicotinoid Pollution in the Yangtze River Basin Using a Modified Mass Balance Approach. Environmental Science & Emp; Technology, 2019, 53, 2539-2548.	10.0	88
49	Rice life cycle-based global mercury biotransport and human methylmercury exposure. Nature Communications, 2019, 10, 5164.	12.8	84
50	A psychophysical measurement on subjective well-being and air pollution. Nature Communications, 2019, 10, 5473.	12.8	50
51	Impact of particle chemical composition and water content on the photolytic reduction of particle-bound mercury. Atmospheric Environment, 2019, 200, 24-33.	4.1	13
52	Trade-Induced Atmospheric Mercury Deposition over China and Implications for Demand-Side Controls. Environmental Science & Env	10.0	45
53	A review of air pollution impact on subjective well-being: Survey versus visual psychophysics. Journal of Cleaner Production, 2018, 184, 959-968.	9.3	91
54	Physiologically based pharmacokinetic (PBPK) modeling of human lactational transfer of methylmercury in China. Environment International, 2018, 115, 180-187.	10.0	14

#	Article	IF	CITATIONS
55	Impacts of supply and consumption structure on the mercury emission in China: An input-output analysis based assessment. Journal of Cleaner Production, 2018, 170, 96-107.	9.3	37
56	Evaluation of costs associated with atmospheric mercury emission reductions from coal combustion in China in 2010 and projections for 2020. Science of the Total Environment, 2018, 610-611, 796-801.	8.0	14
57	Increases of Total Mercury and Methylmercury Releases from Municipal Sewage into Environment in China and Implications. Environmental Science & Enviro	10.0	64
58	Historical and future trends in global source-receptor relationships of mercury. Science of the Total Environment, 2018, 610-611, 24-31.	8.0	24
59	Atmospheric Mercury Outflow from China and Interprovincial Trade. Environmental Science & Emp; Technology, 2018, 52, 13792-13800.	10.0	16
60	Comparison of Reactive Gaseous Mercury Collection by Different Sampling Methods in a Laboratory Test and Field Monitoring. Environmental Science and Technology Letters, 2018, 5, 600-607.	8.7	15
61	High-resolution vehicle emission inventory and emission control policy scenario analysis, a case in the Beijing-Tianjin-Hebei (BTH) region, China. Journal of Cleaner Production, 2018, 203, 530-539.	9.3	62
62	Impact of Water-Induced Soil Erosion on the Terrestrial Transport and Atmospheric Emission of Mercury in China. Environmental Science & Emp; Technology, 2018, 52, 6945-6956.	10.0	36
63	Multi-year monitoring of atmospheric total gaseous mercury at a remote high-altitude site (Nam Co,) Tj ETQq1 1 0 10557-10574.	.784314 r 4.9	gBT /Overlo 42
64	Traditional Tibetan Medicine Induced High Methylmercury Exposure Level and Environmental Mercury Burden in Tibet, China. Environmental Science & Envir	10.0	17
65	Chemical Form and Bioaccessibility of Mercury in Traditional Tibetan Medicines. Environmental Science and Technology Letters, 2018, 5, 552-557.	8.7	5
66	Impacts of farmed fish consumption and food trade on methylmercury exposure in China. Environment International, 2018, 120, 333-344.	10.0	65
67	Evaluation of passive sampling of gaseous mercury using different sorbing materials. Environmental Science and Pollution Research, 2017, 24, 14190-14197.	5.3	4
68	Decline in Chinese lake phosphorus concentration accompanied by shift in sources since 2006. Nature Geoscience, 2017, 10, 507-511.	12.9	236
69	Estimation of nutrient discharge from the Yangtze River to the East China Sea and the identification of nutrient sources. Journal of Hazardous Materials, 2017, 321, 728-736.	12.4	98
70	Mercury Release to Aquatic Environments from Anthropogenic Sources in China from 2001 to 2012. Environmental Science & Environ	10.0	53
71	First field-based atmospheric observation of the reduction of reactive mercury driven by sunlight. Atmospheric Environment, 2016, 134, 27-39.	4.1	28
72	Mercury risk assessment combining internal and external exposure methods for a population living near a municipal solid waste incinerator. Environmental Pollution, 2016, 219, 1060-1068.	7.5	17

#	Article	IF	CITATIONS
73	Recent Decline of Atmospheric Mercury Recorded by <i>Androsace tapete</i> on the Tibetan Plateau. Environmental Science & Envi	10.0	16
74	Mercury Export from Mainland China to Adjacent Seas and Its Influence on the Marine Mercury Balance. Environmental Science & E	10.0	68
75	Riverine nitrogen loss in the Tibetan Plateau and potential impacts of climate change. Science of the Total Environment, 2016, 553, 276-284.	8.0	15
76	Perspectives on policy framework for trans-boundary water quality management in China. Environmental Hazards, 2016, 15, 113-127.	2.5	3
77	Nutrient Loads Flowing into Coastal Waters from the Main Rivers of China (2006–2012). Scientific Reports, 2015, 5, 16678.	3.3	95
78	A decline in Arctic Ocean mercury suggested by differences in decadal trends of atmospheric mercury between the Arctic and northern midlatitudes. Geophysical Research Letters, 2015, 42, 6076-6083.	4.0	21
79	Low-Level Prenatal Mercury Exposure in North China: An Exploratory Study of Anthropometric Effects. Environmental Science & Emp; Technology, 2015, 49, 6899-6908.	10.0	34
80	Influence of meteorological factors on the atmospheric mercury measurement by a novel passive sampler. Atmospheric Environment, 2014, 97, 310-315.	4.1	17
81	Associations of methylmercury and inorganic mercury between human cord blood and maternal blood: A meta-analysis and its application. Environmental Pollution, 2014, 191, 25-30.	7.5	21
82	Comparison of heterogeneous photolytic reduction of Hg(II) in the coal fly ashes and synthetic aerosols. Atmospheric Research, 2014, 138, 324-329.	4.1	32
83	Emission of Metals from Pelletized and Uncompressed Biomass Fuels Combustion in Rural Household Stoves in China. Scientific Reports, 2014, 4, 5611.	3.3	33
84	Atmospheric photolytic reduction of Hg(ii) in dry aerosols. Environmental Sciences: Processes and Impacts, 2013, 15, 1883.	3.5	20
85	Behavior of mercury in an urban river and its accumulation in aquatic plants. Environmental Earth Sciences, 2013, 68, 1089-1097.	2.7	27
86	Highâ€resolution inventory of mercury emissions from biomass burning in China for 2000–2010 and a projection for 2020. Journal of Geophysical Research D: Atmospheres, 2013, 118, 12,248.	3.3	25
87	Mercury emissions from waste combustion in China from 2004 to 2010. Atmospheric Environment, 2012, 62, 359-366.	4.1	35
88	Characterization of atmospheric mercury concentrations along an urban–rural gradient using a newly developed passive sampler. Atmospheric Environment, 2012, 47, 26-32.	4.1	36