Xiang-Dong Fu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/238960/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Regulation of the Hippo-YAP Pathway by G-Protein-Coupled Receptor Signaling. Cell, 2012, 150, 780-791.	13.5	1,310
2	Context-dependent control of alternative splicing by RNA-binding proteins. Nature Reviews Genetics, 2014, 15, 689-701.	7.7	854
3	Reprogramming transcription by distinct classes of enhancers functionally defined by eRNA. Nature, 2011, 474, 390-394.	13.7	777
4	Factor required for mammalian spliceosome assembly is localized to discrete regions in the nucleus. Nature, 1990, 343, 437-441.	13.7	726
5	A large-scale binding and functional map of human RNA-binding proteins. Nature, 2020, 583, 711-719.	13.7	667
6	9p21 DNA variants associated with coronary artery disease impair interferon-Î ³ signalling response. Nature, 2011, 470, 264-268.	13.7	557
7	Nuclear Receptor-Induced Chromosomal Proximity and DNA Breaks Underlie Specific Translocations in Cancer. Cell, 2009, 139, 1069-1083.	13.5	539
8	An RNA code for the FOX2 splicing regulator revealed by mapping RNA-protein interactions in stem cells. Nature Structural and Molecular Biology, 2009, 16, 130-137.	3.6	536
9	Direct Conversion of Fibroblasts to Neurons by Reprogramming PTB-Regulated MicroRNA Circuits. Cell, 2013, 152, 82-96.	13.5	508
10	Targeted degradation of sense and antisense <i>C9orf72</i> RNA foci as therapy for ALS and frontotemporal degeneration. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4530-9.	3.3	508
11	A serine kinase regulates intracellular localization of splicing factors in the cell cycle. Nature, 1994, 369, 678-682.	13.7	498
12	Genome-wide Analysis of PTB-RNA Interactions Reveals a Strategy Used by the General Splicing Repressor to Modulate Exon Inclusion or Skipping. Molecular Cell, 2009, 36, 996-1006.	4.5	429
13	Timing of plant immune responses by a central circadian regulator. Nature, 2011, 470, 110-114.	13.7	404
14	Histone Methylation-Dependent Mechanisms Impose Ligand Dependency for Gene Activation by Nuclear Receptors. Cell, 2007, 128, 505-518.	13.5	399
15	MicroRNA Directly Enhances Mitochondrial Translation during Muscle Differentiation. Cell, 2014, 158, 607-619.	13.5	385
16	Regulation of splicing by SR proteins and SR protein-specific kinases. Chromosoma, 2013, 122, 191-207.	1.0	358
17	Pachytene piRNAs instruct massive mRNA elimination during late spermiogenesis. Cell Research, 2014, 24, 680-700.	5.7	344
18	The splicing factor SC35 has an active role in transcriptional elongation. Nature Structural and Molecular Biology, 2008, 15, 819-826.	3.6	316

#	Article	IF	CITATIONS
19	Reversing a model of Parkinson's disease with in situ converted nigral neurons. Nature, 2020, 582, 550-556.	13.7	316
20	ASF/SF2-Regulated CaMKIIδAlternative Splicing Temporally Reprograms Excitation-Contraction Coupling in Cardiac Muscle. Cell, 2005, 120, 59-72.	13.5	315
21	ldentification of Nafamostat as a Potent Inhibitor of Middle East Respiratory Syndrome Coronavirus S Protein-Mediated Membrane Fusion Using the Split-Protein-Based Cell-Cell Fusion Assay. Antimicrobial Agents and Chemotherapy, 2016, 60, 6532-6539.	1.4	300
22	SR Proteins Collaborate with 7SK and Promoter-Associated Nascent RNA to Release Paused Polymerase. Cell, 2013, 153, 855-868.	13.5	279
23	Specific commitment of different pre-mRNAs to splicing by single SR proteins. Nature, 1993, 365, 82-85.	13.7	274
24	SRPK2: A Differentially Expressed SR Protein-specific Kinase Involved in Mediating the Interaction and Localization of Pre-mRNA Splicing Factors in Mammalian Cells. Journal of Cell Biology, 1998, 140, 737-750.	2.3	274
25	MIWI and piRNA-mediated cleavage of messenger RNAs in mouse testes. Cell Research, 2015, 25, 193-207.	5.7	266
26	R-ChIP Using Inactive RNase H Reveals Dynamic Coupling of R-loops with Transcriptional Pausing at Gene Promoters. Molecular Cell, 2017, 68, 745-757.e5.	4.5	263
27	SR Proteins in Vertical Integration of Gene Expression from Transcription to RNA Processing to Translation. Molecular Cell, 2009, 35, 1-10.	4.5	262
28	Genome-wide Analysis Reveals SR Protein Cooperation and Competition in Regulated Splicing. Molecular Cell, 2013, 50, 223-235.	4.5	261
29	Efficient Generation of Human iPSCs by a Synthetic Self-Replicative RNA. Cell Stem Cell, 2013, 13, 246-254.	5.2	253
30	Pre-mRNA splicing is facilitated by an optimal RNA polymerase II elongation rate. Genes and Development, 2014, 28, 2663-2676.	2.7	250
31	Enhancing nuclear receptor-induced transcription requires nuclear motor and LSD1-dependent gene networking in interchromatin granules. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 19199-19204.	3.3	246
32	Isolation of a complementary DNA that encodes the mammalian splicing factor SC35. Science, 1992, 256, 535-538.	6.0	245
33	GRID-seq reveals the global RNA–chromatin interactome. Nature Biotechnology, 2017, 35, 940-950.	9.4	233
34	Ultrastructural Analysis of Transcription and Splicing in the Cell Nucleus after Bromo-UTP Microinjection. Molecular Biology of the Cell, 1999, 10, 211-223.	0.9	228
35	CLP1 Founder Mutation Links tRNA Splicing and Maturation to Cerebellar Development and Neurodegeneration. Cell, 2014, 157, 651-663.	13.5	228
36	Pervasive Chromatin-RNA Binding Protein Interactions Enable RNA-Based Regulation of Transcription. Cell, 2019, 178, 107-121.e18.	13.5	224

#	Article	IF	CITATIONS
37	The Akt-SRPK-SR Axis Constitutes a Major Pathway in Transducing EGF Signaling to Regulate Alternative Splicing in the Nucleus. Molecular Cell, 2012, 47, 422-433.	4.5	221
38	ALS-causative mutations in FUS/TLS confer gain and loss of function by altered association with SMN and U1-snRNP. Nature Communications, 2015, 6, 6171.	5.8	205
39	The Augmented R-Loop Is a Unifying Mechanism for Myelodysplastic Syndromes Induced by High-Risk Splicing Factor Mutations. Molecular Cell, 2018, 69, 412-425.e6.	4.5	203
40	Profiling alternative splicing on fiber-optic arrays. Nature Biotechnology, 2002, 20, 353-358.	9.4	197
41	WNT7A and PAX6 define corneal epithelium homeostasis and pathogenesis. Nature, 2014, 511, 358-361.	13.7	193
42	Ubiquitination-Deficient Mutations in Human Piwi Cause Male Infertility by Impairing Histone-to-Protamine Exchange during Spermiogenesis. Cell, 2017, 169, 1090-1104.e13.	13.5	193
43	Toxic gain of function from mutant <scp>FUS</scp> protein is crucial to trigger cell autonomous motor neuron loss. EMBO Journal, 2016, 35, 1077-1097.	3.5	187
44	ALS/FTD-Linked Mutation in FUS Suppresses Intra-axonal Protein Synthesis and Drives Disease Without Nuclear Loss-of-Function of FUS. Neuron, 2018, 100, 816-830.e7.	3.8	185
45	Interaction between the RNA binding domains of Ser-Arg splicing factor 1 and U1-70K snRNP protein determines early spliceosome assembly. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8233-8238.	3.3	180
46	Interplay between SRPK and Clk/Sty Kinases in Phosphorylation of the Splicing Factor ASF/SF2 Is Regulated by a Docking Motif in ASF/SF2. Molecular Cell, 2005, 20, 77-89.	4.5	179
47	Age-Dependent Brain Gene Expression and Copy Number Anomalies in Autism Suggest Distinct Pathological Processes at Young Versus Mature Ages. PLoS Genetics, 2012, 8, e1002592.	1.5	179
48	SR Proteins and Related Factors in Alternative Splicing. Advances in Experimental Medicine and Biology, 2007, 623, 107-122.	0.8	178
49	Non-coding RNA: a new frontier in regulatory biology. National Science Review, 2014, 1, 190-204.	4.6	175
50	SRPK1 and Clk/Sty Protein Kinases Show Distinct Substrate Specificities for Serine/Arginine-rich Splicing Factors. Journal of Biological Chemistry, 1996, 271, 24569-24575.	1.6	172
51	Capturing the interactome of newly transcribed RNA. Nature Methods, 2018, 15, 213-220.	9.0	170
52	A Versatile Assay for High-Throughput Gene Expression Profiling on Universal Array Matrices. Genome Research, 2004, 14, 878-885.	2.4	165
53	NEAT1 scaffolds RNA-binding proteins and the Microprocessor to globally enhance pri-miRNA processing. Nature Structural and Molecular Biology, 2017, 24, 816-824.	3.6	165
54	Regulation of SR protein phosphorylation and alternative splicing by modulating kinetic interactions of SRPK1 with molecular chaperones. Genes and Development, 2009, 23, 482-495.	2.7	160

#	Article	IF	CITATIONS
55	Functional integration of transcriptional and RNA processing machineries. Current Opinion in Cell Biology, 2008, 20, 260-265.	2.6	154
56	Chromatin-associated RNAs as facilitators of functional genomic interactions. Nature Reviews Genetics, 2019, 20, 503-519.	7.7	151
57	Mechanisms for U2AF to define 3′ splice sites and regulate alternative splicing in the human genome. Nature Structural and Molecular Biology, 2014, 21, 997-1005.	3.6	150
58	Nuclear Matrix Factor hnRNP U/SAF-A Exerts a Global Control of Alternative Splicing by Regulating U2 snRNP Maturation. Molecular Cell, 2012, 45, 656-668.	4.5	146
59	Conserved Sr Protein Kinase Functions in Nuclear Import and Its Action Is Counteracted by Arginine Methylation in Saccharomyces cerevisiae. Journal of Cell Biology, 2000, 150, 707-718.	2.3	144
60	Molecular basis for 5-carboxycytosine recognition by RNA polymerase II elongation complex. Nature, 2015, 523, 621-625.	13.7	141
61	Splicing Regulator SC35 Is Essential for Genomic Stability and Cell Proliferation during Mammalian Organogenesis. Molecular and Cellular Biology, 2007, 27, 5393-5402.	1.1	137
62	SC35 Plays a Role in T Cell Development and Alternative Splicing of CD45. Molecular Cell, 2001, 7, 331-342.	4.5	136
63	Layered hydrogels accelerate iPSC-derived neuronal maturation and reveal migration defects caused by MeCP2 dysfunction. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3185-3190.	3.3	136
64	A Translation-Activating Function of MIWI/piRNA during Mouse Spermiogenesis. Cell, 2019, 179, 1566-1581.e16.	13.5	136
65	Principles of RNA processing from analysis of enhanced CLIP maps for 150 RNA binding proteins. Genome Biology, 2020, 21, 90.	3.8	136
66	Phosphorylation Regulates In Vivo Interaction and Molecular Targeting of Serine/Arginine-rich Pre-mRNA Splicing Factors. Journal of Cell Biology, 1999, 145, 447-455.	2.3	135
67	The splicing regulator PTBP2 controls a program of embryonic splicing required for neuronal maturation. ELife, 2014, 3, e01201.	2.8	135
68	MicroRNA-21 Lowers Blood Pressure in Spontaneous Hypertensive Rats by Upregulating Mitochondrial Translation. Circulation, 2016, 134, 734-751.	1.6	134
69	A novel class of microRNA-recognition elements that function only within open reading frames. Nature Structural and Molecular Biology, 2018, 25, 1019-1027.	3.6	134
70	Substrate Specificities of SR Proteins in Constitutive Splicing Are Determined by Their RNA Recognition Motifs and Composite Pre-mRNA Exonic Elements. Molecular and Cellular Biology, 1999, 19, 1853-1863.	1.1	133
71	Dilated cardiomyopathy caused by tissue-specific ablation of SC35 in the heart. EMBO Journal, 2004, 23, 885-896.	3.5	128
72	SON Controls Cell-Cycle Progression by Coordinated Regulation of RNA Splicing. Molecular Cell, 2011, 42, 185-198.	4.5	127

5

#	Article	IF	CITATIONS
73	Nuclear miR-320 Mediates Diabetes-Induced Cardiac Dysfunction by Activating Transcription of Fatty Acid Metabolic Genes to Cause Lipotoxicity in the Heart. Circulation Research, 2019, 125, 1106-1120.	2.0	127
74	Perspectives on ENCODE. Nature, 2020, 583, 693-698.	13.7	123
75	Sensitive ChIP-DSL technology reveals an extensive estrogen receptor Â-binding program on human gene promoters. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 4852-4857.	3.3	120
76	Pre-mRNA splicing: where and when in the nucleus. Trends in Cell Biology, 2011, 21, 336-343.	3.6	118
77	MAPT/Tau accumulation represses autophagy flux by disrupting IST1-regulated ESCRT-III complex formation: a vicious cycle in Alzheimer neurodegeneration. Autophagy, 2020, 16, 641-658.	4.3	117
78	RBFox1-mediated RNA splicing regulates cardiac hypertrophy and heart failure. Journal of Clinical Investigation, 2015, 126, 195-206.	3.9	114
79	Both Decreased and Increased SRPK1 Levels Promote Cancer by Interfering with PHLPP-Mediated Dephosphorylation of Akt. Molecular Cell, 2014, 54, 378-391.	4.5	105
80	Regulated Cellular Partitioning of SR Protein-specific Kinases in Mammalian Cells. Molecular Biology of the Cell, 2006, 17, 876-885.	0.9	101
81	SRSF1 regulates the assembly of pre-mRNA processing factors in nuclear speckles. Molecular Biology of the Cell, 2012, 23, 3694-3706.	0.9	100
82	A protein related to splicing factor U2AF35 that interacts with U2AF65 and SR proteins in splicing of pre-mRNA. Nature, 1997, 388, 397-400.	13.7	99
83	A Sliding Docking Interaction Is Essential for Sequential and Processive Phosphorylation of an SR Protein by SRPK1. Molecular Cell, 2008, 29, 563-576.	4.5	98
84	Processive phosphorylation of alternative splicing factor/splicing factor 2. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 12601-12606.	3.3	97
85	MiR-215 Is Induced Post-transcriptionally via HIF-Drosha Complex and Mediates Glioma-Initiating Cell Adaptation to Hypoxia by Targeting KDM1B. Cancer Cell, 2016, 29, 49-60.	7.7	95
86	SRPKIN-1: A Covalent SRPK1/2 Inhibitor that Potently Converts VEGF from Pro-angiogenic to Anti-angiogenic Isoform. Cell Chemical Biology, 2018, 25, 460-470.e6.	2.5	95
87	SRSF2 Is Essential for Hematopoiesis, and Its Myelodysplastic Syndrome-Related Mutations Dysregulate Alternative Pre-mRNA Splicing. Molecular and Cellular Biology, 2015, 35, 3071-3082.	1.1	92
88	TDP-43 aggregation induced by oxidative stress causes global mitochondrial imbalance in ALS. Nature Structural and Molecular Biology, 2021, 28, 132-142.	3.6	92
89	Profiling alternatively spliced mRNA isoforms for prostate cancer classification. BMC Bioinformatics, 2006, 7, 202.	1.2	91
90	Determination of tag density required for digital transcriptome analysis: Application to an androgen-sensitive prostate cancer model. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 20179-20184.	3.3	90

#	Article	IF	CITATIONS
91	Dephosphorylation-Dependent Sorting of SR Splicing Factors during mRNP Maturation. Molecular Cell, 2005, 20, 413-425.	4.5	88
92	Sequential regulatory loops as key gatekeepers for neuronal reprogramming in human cells. Nature Neuroscience, 2016, 19, 807-815.	7.1	88
93	Mass Spectrometric and Kinetic Analysis of ASF/SF2 Phosphorylation by SRPK1 and Clk/Sty. Journal of Biological Chemistry, 2005, 280, 41761-41768.	1.6	82
94	RASLâ€seq for Massively Parallel and Quantitative Analysis of Gene Expression. Current Protocols in Molecular Biology, 2012, 98, Unit 4.13.1-9.	2.9	78
95	Characteristics and regulatory elements defining constitutive splicing and different modes of alternative splicing in human and mouse. Rna, 2005, 11, 1777-1787.	1.6	75
96	Two-Dimensional Transcriptome Profiling: Identification of Messenger RNA Isoform Signatures in Prostate Cancer from Archived Paraffin-Embedded Cancer Specimens. Cancer Research, 2006, 66, 4079-4088.	0.4	75
97	Repression of the Central Splicing Regulator RBFox2 Is Functionally Linked to Pressure Overload-Induced Heart Failure. Cell Reports, 2015, 10, 1521-1533.	2.9	74
98	Release of SR Proteins from CLK1 by SRPK1: A Symbiotic Kinase System for Phosphorylation Control of Pre-mRNA Splicing. Molecular Cell, 2016, 63, 218-228.	4.5	74
99	Towards a Splicing Code. Cell, 2004, 119, 736-738.	13.5	73
100	SR Proteins Induce Alternative Exon Skipping through Their Activities on the Flanking Constitutive Exons. Molecular and Cellular Biology, 2011, 31, 793-802.	1.1	72
101	The structure of Sky1p reveals a novel mechanism for constitutive activity. Nature Structural Biology, 2001, 8, 176-183.	9.7	70
102	Partitioning RS Domain Phosphorylation in an SR Protein through the CLK and SRPK Protein Kinases. Journal of Molecular Biology, 2013, 425, 2894-2909.	2.0	69
103	Inhibition of mTOR pathway restrains astrocyte proliferation, migration and production of inflammatory mediators after oxygen–glucose deprivation and reoxygenation. Neurochemistry International, 2015, 83-84, 9-18.	1.9	66
104	An evolutionarily conserved DNA architecture determines target specificity of the TWIST family bHLH transcription factors. Genes and Development, 2015, 29, 603-616.	2.7	66
105	RBFox2 Binds Nascent RNA to Globally Regulate Polycomb Complex 2 Targeting in Mammalian Genomes. Molecular Cell, 2016, 62, 875-889.	4.5	66
106	Widespread JNK-dependent alternative splicing induces a positive feedback loop through CELF2-mediated regulation of MKK7 during T-cell activation. Genes and Development, 2015, 29, 2054-2066.	2.7	65
107	Versatile pathway-centric approach based on high-throughput sequencing to anticancer drug discovery. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4609-4614.	3.3	63
108	A multiplex RNA-seq strategy to profile poly(A+) RNA: Application to analysis of transcription response and $3\hat{\epsilon}^2$ end formation. Genomics, 2011, 98, 266-271.	1.3	61

#	Article	IF	CITATIONS
109	SPOP-containing complex regulates SETD2 stability and H3K36me3-coupled alternative splicing. Nucleic Acids Research, 2017, 45, 92-105.	6.5	60
110	De Novo Prediction of PTBP1 Binding and Splicing Targets Reveals Unexpected Features of Its RNA Recognition and Function. PLoS Computational Biology, 2014, 10, e1003442.	1.5	56
111	PTB/nPTB: master regulators of neuronal fate in mammals. Biophysics Reports, 2018, 4, 204-214.	0.2	55
112	Transcriptional repression of estrogen receptor alpha by YAP reveals the Hippo pathway as therapeutic target for ER+ breast cancer. Nature Communications, 2022, 13, 1061.	5.8	55
113	Transcription Factor PAX6 (Paired Box 6) Controls Limbal Stem Cell Lineage in Development and Disease. Journal of Biological Chemistry, 2015, 290, 20448-20454.	1.6	54
114	Initiation of Parental Genome Reprogramming in Fertilized Oocyte by Splicing Kinase SRPK1-Catalyzed Protamine Phosphorylation. Cell, 2020, 180, 1212-1227.e14.	13.5	54
115	Nuclear organization in the 3D space of the nucleus—cause or consequence?. Current Opinion in Genetics and Development, 2009, 19, 424-436.	1.5	52
116	Induced transcription and stability of CELF2 mRNA drives widespread alternative splicing during T-cell signaling. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E2139-48.	3.3	51
117	Fingolimod suppresses neuronal autophagy through the mTOR/p70S6K pathway and alleviates ischemic brain damage in mice. PLoS ONE, 2017, 12, e0188748.	1.1	51
118	PTB/nPTB switch: a post-transcriptional mechanism for programming neuronal differentiation: Figure 1 Genes and Development, 2007, 21, 1573-1577.	2.7	50
119	Eliminating base-editor-induced genome-wide and transcriptome-wide off-target mutations. Nature Cell Biology, 2021, 23, 552-563.	4.6	50
120	Hierarchically constructed selenium-doped bone-mimetic nanoparticles promote ROS-mediated autophagy and apoptosis for bone tumor inhibition. Biomaterials, 2020, 257, 120253.	5.7	47
121	Suppression of hepatitis B virus replication by SRPK1 and SRPK2 via a pathway independent of the phosphorylation of the viral core protein. Virology, 2005, 342, 150-158.	1.1	46
122	Ordered Multi-site Phosphorylation of the Splicing Factor ASF/SF2 By SRPK1. Journal of Molecular Biology, 2008, 376, 55-68.	2.0	46
123	R-ChIP for genome-wide mapping of R-loops by using catalytically inactive RNASEH1. Nature Protocols, 2019, 14, 1661-1685.	5.5	46
124	LncRNA-HOTAIR inhibition aggravates oxidative stress-induced H9c2 cells injury through suppression of MMP2 by miR-125. Acta Biochimica Et Biophysica Sinica, 2018, 50, 996-1006.	0.9	45
125	Seawater acidification increases copper toxicity: A multi-biomarker approach with a key marine invertebrate, the Pacific Oyster Crassostrea gigas. Aquatic Toxicology, 2019, 210, 167-178.	1.9	45
126	Phosphorylation-dependent and -independent Nuclear Import of RS Domain-containing Splicing Factors and Regulators. Journal of Biological Chemistry, 2003, 278, 18050-18055.	1.6	44

#	Article	IF	CITATIONS
127	Adaptable Molecular Interactions Guide Phosphorylation of the SR Protein ASF/SF2 by SRPK1. Journal of Molecular Biology, 2008, 382, 894-909.	2.0	44
128	PRDM16 Is a Compact Myocardium-Enriched Transcription Factor Required to Maintain Compact Myocardial Cardiomyocyte Identity in Left Ventricle. Circulation, 2022, 145, 586-602.	1.6	44
129	Conserved proline-directed phosphorylation regulates SR protein conformation and splicing function. Biochemical Journal, 2015, 466, 311-322.	1.7	43
130	Nexilin Is a New Component of Junctional Membrane Complexes Required for Cardiac T-Tubule Formation. Circulation, 2019, 140, 55-66.	1.6	41
131	Distinct splicing signatures affect converged pathways in myelodysplastic syndrome patients carrying mutations in different splicing regulators. Rna, 2016, 22, 1535-1549.	1.6	40
132	JMJD6 and U2AF65 co-regulate alternative splicing in both JMJD6 enzymatic activity dependent and independent manner. Nucleic Acids Research, 2017, 45, 3503-3518.	6.5	40
133	MicroRNA-34c Downregulation Ameliorates Amyloid-β-Induced Synaptic Failure and Memory Deficits by Targeting VAMP2. Journal of Alzheimer's Disease, 2015, 48, 673-686.	1.2	37
134	Deep learning-enabled pelvic ultrasound images for accurate diagnosis of ovarian cancer in China: a retrospective, multicentre, diagnostic study. The Lancet Digital Health, 2022, 4, e179-e187.	5.9	37
135	Genomic functions of U2AF in constitutive and regulated splicing. RNA Biology, 2015, 12, 479-485.	1.5	36
136	N-terminus of the protein kinase CLK1 induces SR protein hyperphosphorylation. Biochemical Journal, 2014, 462, 143-152.	1.7	35
137	Mechanism of Dephosphorylation of the SR Protein ASF/SF2 by Protein Phosphatase 1. Journal of Molecular Biology, 2010, 403, 386-404.	2.0	33
138	Directly converted patient-specific induced neurons mirror the neuropathology of FUS with disrupted nuclear localization in amyotrophic lateral sclerosis. Molecular Neurodegeneration, 2016, 11, 8.	4.4	33
139	SR Protein Kinase 1 Is Resilient to Inactivation. Structure, 2007, 15, 123-133.	1.6	32
140	Liver-Specific Deletion of SRSF2 Caused Acute Liver Failure and Early Death in Mice. Molecular and Cellular Biology, 2016, 36, 1628-1638.	1.1	32
141	RBFox2-miR-34a-Jph2 axis contributes to cardiac decompensation during heart failure. Proceedings of the United States of America, 2019, 116, 6172-6180.	3.3	32
142	SRPK1 acetylation modulates alternative splicing to regulate cisplatin resistance in breast cancer cells. Communications Biology, 2020, 3, 268.	2.0	32
143	Active RNA interference in mitochondria. Cell Research, 2021, 31, 219-228.	5.7	32
144	Regiospecific Phosphorylation Control of the SR Protein ASF/SF2 by SRPK1. Journal of Molecular Biology, 2009, 390, 618-634.	2.0	31

#	Article	IF	CITATIONS
145	GRID-seq for comprehensive analysis of global RNA–chromatin interactions. Nature Protocols, 2019, 14, 2036-2068.	5.5	31
146	Matrix stiffness regulates epithelial-mesenchymal transition via cytoskeletal remodeling and MRTF-A translocation in osteosarcoma cells. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 90, 226-238.	1.5	31
147	Type I Interferon Regulates a Coordinated Gene Network to Enhance Cytotoxic T Cell–Mediated Tumor Killing. Cancer Discovery, 2020, 10, 382-393.	7.7	31
148	Induction of Retinal Progenitors and Neurons from Mammalian Müller Glia under Defined Conditions. Journal of Biological Chemistry, 2014, 289, 11945-11951.	1.6	30
149	Dynamic profiling and functional interpretation of histone lysine crotonylation and lactylation during neural development. Development (Cambridge), 2022, 149, .	1.2	30
150	Co-Expression of Foreign Proteins Tethered to HIV-1 Envelope Glycoprotein on the Cell Surface by Introducing an Intervening Second Membrane-Spanning Domain. PLoS ONE, 2014, 9, e96790.	1.1	29
151	Irx1 regulates dental outer enamel epithelial and lung alveolar type II epithelial differentiation. Developmental Biology, 2017, 429, 44-55.	0.9	29
152	β atenin deficiency in hepatocytes aggravates hepatocarcinogenesis driven by oncogenic β atenin and MET. Hepatology, 2018, 67, 1807-1822.	3.6	29
153	Transcription Elongation Machinery Is a Druggable Dependency and Potentiates Immunotherapy in Glioblastoma Stem Cells. Cancer Discovery, 2022, 12, 502-521.	7.7	29
154	Novel nuclear ribonucleoprotein structural components in the dormouse adrenal cortex during hibernation. Chromosoma, 1995, 104, 121-128.	1.0	28
155	Direct Reprogramming of Huntington's Disease Patient Fibroblasts into Neuron-Like Cells Leads to Abnormal Neurite Outgrowth, Increased Cell Death, and Aggregate Formation. PLoS ONE, 2014, 9, e109621.	1.1	28
156	Global analysis of physical and functional RNA targets of hnRNP L reveals distinct sequence and epigenetic features of repressed and enhanced exons. Rna, 2015, 21, 2053-2066.	1.6	28
157	CELF RNA binding proteins promote axon regeneration in C. elegans and mammals through alternative splicing of Syntaxins. ELife, 2016, 5, .	2.8	27
158	PVT1 affects EMT and cell proliferation and migration via regulating p21 in triple-negative breast cancer cells cultured with mature adipogenic medium. Acta Biochimica Et Biophysica Sinica, 2018, 50, 1211-1218.	0.9	27
159	Alternative polyadenylation by sequential activation of distal and proximal PolyA sites. Nature Structural and Molecular Biology, 2022, 29, 21-31.	3.6	27
160	ADAR1-mediated RNA editing links ganglioside catabolism to glioblastoma stem cell maintenance. Journal of Clinical Investigation, 2022, 132, .	3.9	27
161	The RNA binding protein EWS is broadly involved in the regulation of pri-miRNA processing in mammalian cells. Nucleic Acids Research, 2017, 45, 12481-12495.	6.5	26
162	Cockayne syndrome B protein acts as an ATP-dependent processivity factor that helps RNA polymerase II overcome nucleosome barriers. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 25486-25493.	3.3	26

#	Article	IF	CITATIONS
163	Patient fibroblasts-derived induced neurons demonstrate autonomous neuronal defects in adult-onset Krabbe disease. Oncotarget, 2016, 7, 74496-74509.	0.8	26
164	Localization of Serine Kinases, SRPK1 (SFRSK1) and SRPK2 (SFRSK2), Specific for the SR Family of Splicing Factors in Mouse and Human Chromosomes. Genomics, 1999, 57, 310-315.	1.3	25
165	Evidence for a role of Sky1p-mediated phosphorylation in 3′ splice site recognition involving both Prp8 and Prp17/Slu4. Rna, 2001, 7, 1284-1297.	1.6	25
166	The long noncoding RNA Malat1 regulates CD8+ T cell differentiation by mediating epigenetic repression. Journal of Experimental Medicine, 2022, 219, .	4.2	25
167	Rev Inhibition Strongly Affects Intracellular Distribution of Human Immunodeficiency Virus Type 1 RNAs. Journal of Virology, 2002, 76, 10473-10484.	1.5	24
168	MAASE: An alternative splicing database designed for supporting splicing microarray applications. Rna, 2005, 11, 1767-1776.	1.6	23
169	Chromatin: The Final Frontier in Splicing Regulation?. Developmental Cell, 2010, 18, 336-338.	3.1	23
170	Preprocessing and Quality Control Strategies for Illumina DASL Assay-Based Brain Gene Expression Studies with Semi-Degraded Samples. Frontiers in Genetics, 2012, 3, 11.	1.1	22
171	Unique role of SRSF2 in transcription activation and diverse functions of the SR and hnRNP proteins in gene expression regulation. Transcription, 2013, 4, 251-259.	1.7	22
172	CTCF functions as an insulator for somatic genes and a chromatin remodeler for pluripotency genes during reprogramming. Cell Reports, 2022, 39, 110626.	2.9	22
173	Regulation of splicing enhancer activities by RNA secondary structures. FEBS Letters, 2010, 584, 4401-4407.	1.3	21
174	Rapidly activated epidermal growth factor receptor mediates lipopolysaccharide-triggered migration of microglia. Neurochemistry International, 2015, 90, 85-92.	1.9	21
175	Oncogenic miR-17/20a Forms a Positive Feed-forward Loop with the p53 Kinase DAPK3 to Promote Tumorigenesis. Journal of Biological Chemistry, 2015, 290, 19967-19975.	1.6	21
176	Repeated Restraint Stress Led to Cognitive Dysfunction by NMDA Receptor-Mediated Hippocampal CA3 Dendritic Spine Impairments in Juvenile Sprague-Dawley Rats. Frontiers in Molecular Neuroscience, 2020, 13, 552787.	1.4	21
177	CDK inhibitors in cancer therapy, an overview of recent development. American Journal of Cancer Research, 2021, 11, 1913-1935.	1.4	20
178	Dense granular bodies: a novel nucleoplasmic structure in hibernating dormice. Histochemistry and Cell Biology, 1996, 106, 581-586.	0.8	19
179	Conditional knockout mice to study alternative splicing in vivo. Methods, 2005, 37, 387-392.	1.9	19
180	Regulating SR Protein Phosphorylation through Regions Outside the Kinase Domain of SRPK1. Journal of Molecular Biology, 2011, 410, 131-145.	2.0	19

#	Article	IF	CITATIONS
181	R-loopBase: a knowledgebase for genome-wide R-loop formation and regulation. Nucleic Acids Research, 2022, 50, D303-D315.	6.5	19
182	Site-Specific and Enzymatic Cross-Linking of sgRNA Enables Wavelength-Selectable Photoactivated Control of CRISPR Gene Editing. Journal of the American Chemical Society, 2022, 144, 4487-4495.	6.6	18
183	CDK16 promotes the progression and metastasis of triple-negative breast cancer by phosphorylating PRC1. Journal of Experimental and Clinical Cancer Research, 2022, 41, 149.	3.5	18
184	TRAP150 interacts with the RNA-binding domain of PSF and antagonizes splicing of numerous PSF-target genes in T cells. Nucleic Acids Research, 2015, 43, 9006-9016.	6.5	17
185	Inflammation-dependent ISG15 upregulation mediates MIA-induced dendrite damages and depression by disrupting NEDD4/Rap2A signaling. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 1477-1489.	1.8	17
186	Structurally Unique Yeast and Mammalian Serine-Arginine Protein Kinases Catalyze Evolutionarily Conserved Phosphorylation Reactions. Journal of Biological Chemistry, 2007, 282, 23036-23043.	1.6	16
187	A structured RNA in hepatitis B virus postâ€transcriptional regulatory element represses alternative splicing in a sequenceâ€independent and positionâ€dependent manner. FEBS Journal, 2011, 278, 1533-1546.	2.2	16
188	Lactate transport facilitates neurite outgrowth. Bioscience Reports, 2018, 38, .	1.1	16
189	Epithelial cell–specific loss of function of <i>Miz1</i> causes a spontaneous COPD-like phenotype and up-regulates <i>Ace2</i> expression in mice. Science Advances, 2020, 6, eabb7238.	4.7	16
190	Transdifferentiation via transcription factors or microRNAs: Current status and perspective. Differentiation, 2015, 90, 69-76.	1.0	15
191	Overexpression of Mitofusin2 decreased the reactive astrocytes proliferation in vitro induced by oxygen-glucose deprivation/reoxygenation. Neuroscience Letters, 2017, 639, 68-73.	1.0	15
192	Inhibition of Histone Acetylation by ANP32A Induces Memory Deficits. Journal of Alzheimer's Disease, 2018, 63, 1537-1546.	1.2	14
193	Upregulation of UBAP2L in Bone Marrow Mesenchymal Stem Cells Promotes Functional Recovery in Rats with Spinal Cord Injury. Current Medical Science, 2018, 38, 1081-1089.	0.7	13
194	Global profiling of RNA–chromatin interactions reveals co-regulatory gene expression networks in Arabidopsis. Nature Plants, 2021, 7, 1364-1378.	4.7	13
195	Alternative Splicing of a Novel Inducible Exon Diversifies the CASK Guanylate Kinase Domain. Journal of Nucleic Acids, 2012, 2012, 1-15.	0.8	12
196	Interactive effects of ocean acidification, ocean warming, and diurnal temperature cycling on antioxidant responses and energy budgets in two sea urchins Strongylocentrotus intermedius and Tripneustes gratilla from different latitudes. Science of the Total Environment, 2022, 824, 153780.	3.9	12
197	Exploiting the Hidden Treasure of Detained Introns. Cancer Cell, 2017, 32, 393-395.	7.7	11
198	STAT3 ameliorates cognitive deficits by positively regulating the expression of NMDARs in a mouse model of FTDP-17. Signal Transduction and Targeted Therapy, 2020, 5, 295.	7.1	11

#	Article	IF	CITATIONS
199	Overexpression of OLC1 Promotes Tumorigenesis of Human Esophageal Squamous Cell Carcinoma. PLoS ONE, 2014, 9, e90958.	1.1	10
200	A polysaccharide derived from Lentinus edodes impairs the immunosuppressive function of myeloid-derived suppressor cells via the p38 pathways. RSC Advances, 2017, 7, 36533-36540.	1.7	10
201	A tumorigenic index for quantitative analysis of liver cancer initiation and progression. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26873-26880.	3.3	10
202	Angiocrine FSTL1 (Follistatin-Like Protein 1) Insufficiency Leads to Atrial and Venous Wall Fibrosis via SMAD3 Activation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 958-972.	1.1	10
203	P300/CBP inhibition sensitizes mantle cell lymphoma to PI3Kδ inhibitor idelalisib. Acta Pharmacologica Sinica, 2022, 43, 457-469.	2.8	10
204	Widespread Alternative Splicing Changes in Metastatic Breast Cancer Cells. Cells, 2021, 10, 858.	1.8	10
205	Multiplex Analysis of PolyA-Linked Sequences (MAPS): An RNA-Seq Strategy to Profile Poly(A+) RNA. Methods in Molecular Biology, 2014, 1125, 169-178.	0.4	10
206	Genome-wide expression assay comparison across frozen and fixed postmortem brain tissue samples. BMC Genomics, 2011, 12, 449.	1.2	9
207	Active retrotransposons help maintain pericentromeric heterochromatin required for faithful cell division. Genome Research, 2020, 30, 1570-1582.	2.4	9
208	Conjugated linoleic acid prevents age-induced bone loss in mice by regulating both osteoblastogenesis and adipogenesis. Biochemical and Biophysical Research Communications, 2017, 490, 813-820.	1.0	8
209	Brain Repair by Cell Replacement via In Situ Neuronal Reprogramming. Annual Review of Genetics, 2021, 55, 45-69.	3.2	8
210	Context-dependent modulation of Pol II CTD phosphatase SSUP-72 regulates alternative polyadenylation in neuronal development. Genes and Development, 2015, 29, 2377-2390.	2.7	7
211	Both sides of the same coin: Rac1 splicing regulation by EGF signaling. Cell Research, 2017, 27, 455-456.	5.7	7
212	Acer Truncatum Seed Oil Alleviates Learning and Memory Impairments of Aging Mice. Frontiers in Cell and Developmental Biology, 2021, 9, 680386.	1.8	6
213	Global Alternative Splicing Defects in Human Breast Cancer Cells. Cancers, 2021, 13, 3071.	1.7	6
214	Wiskott-Aldrich syndrome protein forms nuclear condensates and regulates alternative splicing. Nature Communications, 2022, 13, .	5.8	6
215	The Mediator Couples Transcription and Splicing. Molecular Cell, 2012, 45, 433-434.	4.5	5
216	EDTP/MTMR14: A novel target for improved survivorship to prolonged anoxia and cellular protein aggregates. Neuroscience Letters, 2019, 705, 151-158.	1.0	5

#	Article	IF	CITATIONS
217	A CRISPR RNA-binding protein screen reveals regulators of RUNX1 isoform generation. Blood Advances, 2021, 5, 1310-1323.	2.5	5
218	Splicing oncogenes. Nature Structural and Molecular Biology, 2007, 14, 174-175.	3.6	4
219	RNA-Seq Analysis of Gene Expression and Alternative Splicing by Double-Random Priming Strategy. Methods in Molecular Biology, 2011, 729, 247-255.	0.4	4
220	Mechanistic Dissection of RNA-Binding Proteins in Regulated Gene Expression at Chromatin Levels. Cold Spring Harbor Symposia on Quantitative Biology, 2019, 84, 55-66.	2.0	4
221	3D genome encoded by LINE and SINE repeats. Cell Research, 2021, 31, 603-604.	5.7	4
222	Reply to Lack of evidence for a role of PIWIL1 variants in human male infertility. Cell, 2021, 184, 1943-1944.	13.5	4
223	Tracking Intron Removal in Real Time. Developmental Cell, 2011, 21, 979-980.	3.1	2
224	Diabetic Insult–Induced Redistribution of MicroRNA in Spatially Organized Mitochondria in Cardiac Muscle. Circulation: Cardiovascular Genetics, 2015, 8, 747-748.	5.1	2
225	ILF3 represses repeat-derived microRNAs targeting RIG-I mediated type I interferon response. Journal of Molecular Biology, 2022, 434, 167469.	2.0	2
226	DNA interaction networks: an information highway for regulated gene expression in the 3-dimentional space of the nucleus. Cell Research, 2009, 19, 1316-1319.	5.7	1
227	A Census of Nuclear Cyanobacterial Recruits in the Plant Kingdom. PLoS ONE, 2015, 10, e0120527.	1.1	1
228	Association of rs4552569 and rs17095830 single-nucleotide polymorphisms with susceptibility to ankylosing spondylitis in east Asian population: a meta-analysis. Journal of Genetics, 2018, 97, 825-833.	0.4	1
229	RNA helicases regulate RNA condensates. Cell Research, 2020, 30, 281-282.	5.7	1
230	Dense granular bodies: a novel nucleoplasmic structure in hibernating dormice. Histochemistry and Cell Biology, 1996, 106, 581-586.	0.8	1
231	Large-scale Analysis of mRNA Splice Variants by Microarray. , 0, , 655-663.		0
232	Yes, SiR. Rna, 2015, 21, 619-621.	1.6	0
233	Pre-mRNA Splicing in Eukaryotic Cells. , 2006, , 447-467.		0