
Manuel Ocana

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2389427/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Oriented Colloidal-Crystal Thin Films by Spin-Coating Microspheres Dispersed in Volatile Media. Advanced Materials, 2006, 18, 2244-2249.	11.1	273
2	Porous Oneâ€Dimensional Photonic Crystals Improve the Powerâ€Conversion Efficiency of Dyeâ€Sensitized Solar Cells. Advanced Materials, 2009, 21, 764-770.	11.1	249
3	The Growth Mechanism of α-Fe2O3 Ellipsoidal Particles in Solution. Journal of Colloid and Interface Science, 1995, 171, 85-91.	5.0	197
4	Low-Temperature Nucleation of Rutile Observed by Raman Spectroscopy during Crystallization of TiO2. Journal of the American Ceramic Society, 1992, 75, 2010-2012.	1.9	190
5	Nanoparticle-Based One-Dimensional Photonic Crystals. Langmuir, 2008, 24, 4430-4434.	1.6	190
6	Formation of Î ³ -Fe2O3Isolated Nanoparticles in a Silica Matrix. Langmuir, 1997, 13, 3627-3634.	1.6	189
7	Uniform colloidal particles in solution: Formation mechanisms. Advanced Materials, 1995, 7, 212-216.	11.1	188
8	Homogeneous Precipitation of Uniform α-Fe2O3Particles from Iron Salts Solutions in the Presence of Urea. Journal of Colloid and Interface Science, 1999, 212, 317-323.	5.0	150
9	Factors affecting the infrared and Raman spectra of rutile powders. Journal of Solid State Chemistry, 1988, 75, 364-372.	1.4	137
10	Rare earth based nanostructured materials: synthesis, functionalization, properties and bioimaging and biosensing applications. Nanophotonics, 2017, 6, 881-921.	2.9	137
11	Preparation and properties of uniform-coated colloidal particles. 6. Titania on zinc oxide. Langmuir, 1991, 7, 2911-2916.	1.6	124
12	Optical properties of α-Fe2O3microcrystals in the infrared. Journal of Physics C: Solid State Physics, 1987, 20, 473-484.	1.5	119
13	Response of Nanoparticle-Based One-Dimensional Photonic Crystals to Ambient Vapor Pressure. Langmuir, 2008, 24, 9135-9139.	1.6	114
14	Synthesis and Properties of Multifunctional Tetragonal Eu:GdPO ₄ Nanocubes for Optical and Magnetic Resonance Imaging Applications. Inorganic Chemistry, 2013, 52, 647-654.	1.9	98
15	Microwave-Assisted Synthesis of Biocompatible Europium-Doped Calcium Hydroxyapatite and Fluoroapatite Luminescent Nanospindles Functionalized with Poly(acrylic acid). Langmuir, 2013, 29, 1985-1994.	1.6	94
16	Well-defined colloidal tin(IV) oxide particles. Journal of Materials Research, 1990, 5, 1083-1091.	1.2	83
17	An ionic liquid based synthesis method for uniform luminescent lanthanide fluoride nanoparticles. Nanotechnology, 2007, 18, 455606.	1.3	81
18	Photoconducting Bragg Mirrors based on TiO ₂ Nanoparticle Multilayers. Advanced Functional Materials. 2008. 18. 2708-2715.	7.8	81

#	Article	IF	CITATIONS
19	Reactivity of lanthanum substituted cobaltites toward carbon particles. Journal of Catalysis, 2008, 257, 334-344.	3.1	81

Microwave-Assisted Synthesis and Luminescence of Mesoporous RE-Doped YPO₄ (RE = Eu,) Tj ETQq0 $\stackrel{0}{0.0}$ rgBT / $\stackrel{0}{81}$ rgBT /

21	Uniform particles of manganese compounds obtained by forced hydrolysis of manganese(II) acetate. Colloid and Polymer Science, 2000, 278, 443-449.	1.0	80
22	Surface modified Eu:GdVO4 nanocrystals for optical and MRI imaging. Dalton Transactions, 2013, 42, 10725.	1.6	75
23	The variability of the infrared powder spectrum of amorphous SiO2. Journal of Non-Crystalline Solids, 1989, 107, 187-192.	1.5	74
24	Photonic crystal made by close packing SiO2submicron spheres. Superlattices and Microstructures, 1997, 22, 399-404.	1.4	73
25	Building Nanocrystalline Planar Defects within Self-Assembled Photonic Crystals by Spin-Coating. Advanced Materials, 2006, 18, 1183-1187.	11.1	72
26	Oxidation state and localization of chromium ions in Cr-doped cassiterite and Cr-doped malayaite. Acta Materialia, 2003, 51, 2371-2381.	3.8	68
27	Experimental Demonstration of the Mechanism of Light Harvesting Enhancement in Photonic-Crystal-Based Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2009, 113, 1150-1154.	1.5	65
28	Aggregation and Matrix Effects on the Infrared Spectrum of Microcrystalline Powders. Applied Spectroscopy, 1990, 44, 418-426.	1.2	64
29	The relationship of particle morphology and structure of basic copper(II) compounds obtained by homogeneous precipitation. Journal of Crystal Growth, 1994, 143, 277-286.	0.7	62
30	Variations of the infrared powder spectra of TiO2 and SnO2 (rutile) with polarization.		
	Spectrochimica Acta Part A: Molecular Spectroscopy, 1991, 47, 765-774.	0.1	61
31	Spectrochimica Acta Part A: Molecular Spectroscopy, 1991, 47, 765-774. Perfectly Transparent Sr ₃ Al ₂ O ₆ Polycrystalline Ceramic Elaborated from Glass Crystallization. Chemistry of Materials, 2013, 25, 4017-4024.	0.1	61 60
31 32	Perfectly Transparent Sr ₃ Al ₂ O ₆ Polycrystalline Ceramic		
	Perfectly Transparent Sr ₃ Al ₂ O ₆ Polycrystalline Ceramic Elaborated from Glass Crystallization. Chemistry of Materials, 2013, 25, 4017-4024. Citrate mediated synthesis of uniform monazite LnPO4 (Ln = La, Ce) and Ln:LaPO4 (Ln = Eu, Ce, Ce + Tb)	3.2	60
32	 Perfectly Transparent Sr₃Al₂O₆ Polycrystalline Ceramic Elaborated from Glass Crystallization. Chemistry of Materials, 2013, 25, 4017-4024. Citrate mediated synthesis of uniform monazite LnPO4 (Ln = La, Ce) and Ln:LaPO4 (Ln = Eu, Ce, Ce + Tb) spheres and their photoluminescence. Journal of Colloid and Interface Science, 2010, 349, 484-491. Polarization effects in the infrared spectra of ?-quartz and ?-cristobalite. Physics and Chemistry of 	3.2 5.0	60 59
32 33	 Perfectly Transparent Sr₃Al₂O₆ Polycrystalline Ceramic Elaborated from Glass Crystallization. Chemistry of Materials, 2013, 25, 4017-4024. Citrate mediated synthesis of uniform monazite LnPO4 (Ln = La, Ce) and Ln:LaPO4 (Ln = Eu, Ce, Ce + Tb) spheres and their photoluminescence. Journal of Colloid and Interface Science, 2010, 349, 484-491. Polarization effects in the infrared spectra of ?-quartz and ?-cristobalite. Physics and Chemistry of Minerals, 1987, 14, 527-532. Synthesis and functionalization of monodisperse near-ultraviolet and visible excitable multifunctional Eu³⁺.REVO₄nanophosphors for bioimaging 	3.2 5.0 0.3	60 59 56

#	Article	IF	CITATIONS
37	A simple procedure for the preparation of spherical oxide particles by hydrolysis of aerosols. Ceramics International, 1992, 18, 99-106.	2.3	50
38	Preparation through Aerosols of Crâ€Doped Y ₂ Sn ₂ O ₇ (Pyrochlore) Redâ€5hade Pigments and Determination of the Cr Oxidation State. Journal of the American Ceramic Society, 2004, 87, 2108-2113.	1.9	50
39	Determination of texture by infrared spectroscopy in titanium oxide–anatase thin films. Journal of Applied Physics, 2003, 93, 4634-4645.	1.1	49
40	Synthesis, through pyrolysis of aerosols, of YIn1â^'xMnxO3 blue pigments and their efficiency for colouring glazes. Dyes and Pigments, 2011, 91, 501-507.	2.0	48
41	A Novel 3D Architecture of GdPO ₄ Nanophosphors: Multicolored and White Light Emission. Crystal Growth and Design, 2013, 13, 526-535.	1.4	48
42	A vibrational study of uniform SnO2 powders of various morphologies. Solid State Ionics, 1993, 63-65, 170-177.	1.3	47
43	Formation of "monodispersed―SnO2 powders of various morphologies. Colloid and Polymer Science, 1995, 273, 681-686.	1.0	47
44	Uniform nanoparticles of Pr(III)/Ceria solid solutions prepared by homogeneous precipitation. Scripta Materialia, 2002, 46, 655-660.	2.6	47
45	Tuning from blue to magenta the up-converted emissions of YF ₃ :Tm ³⁺ /Yb ³⁺ nanocrystals. Nanoscale, 2011, 3, 1046-1052.	2.8	46
46	Bifunctional, Monodisperse BiPO4-Based Nanostars: Photocatalytic Activity and Luminescent Applications. Crystal Growth and Design, 2014, 14, 3319-3326.	1.4	45
47	Iron Zircon Pigments Prepared by Pyrolysis of Aerosols. Journal of Solid State Chemistry, 1997, 128, 102-108.	1.4	42
48	Infrared optical properties of zircon. Materials Research Bulletin, 1994, 29, 417-426.	2.7	41
49	The formation of zircon from amorphous ZrO2 · SiO2 powders. Journal of Materials Science, 1996, 31, 6089-6094.	1.7	41
50	Valence and Localization of Praseodymium in Pr-Doped Zircon. Journal of Solid State Chemistry, 1998, 139, 412-415.	1.4	41
51	Non-conventional synthesis of Cr-doped SnO2 pigments. Ceramics International, 2003, 29, 385-392.	2.3	41
52	Synthesis and luminescence of uniform europium-doped bismuth fluoride and bismuth oxyfluoride particles with different morphologies. CrystEngComm, 2014, 16, 3274.	1.3	41
53	Nanosized Cr2O3 hydrate spherical particles prepared by the urea method. Journal of the European Ceramic Society, 2001, 21, 931-939.	2.8	40
54	A simple procedure for the preparation of Cr-doped tin sphene pigments in the absence of fluxes. Journal of the European Ceramic Society, 2002, 22, 353-359.	2.8	40

#	Article	IF	CITATIONS
55	Mâ€Đoped Al ₂ TiO ₅ (M=Cr, Mn, Co) Solid Solutions and their Use as Ceramic Pigments. Journal of the American Ceramic Society, 2009, 92, 1972-1980.	1.9	39
56	Structural characterization of partially amorphous SnO2 nanoparticles by factor analysis of XAS and FT-IR spectra. Solid State Ionics, 1999, 116, 117-127.	1.3	38
57	Preparation, Characterization, and Magnetic Properties of Fe-Based Alloy Particles with Elongated Morphology. Chemistry of Materials, 2003, 15, 3558-3563.	3.2	38
58	New Single-Phase, White-Light-Emitting Phosphors Based on δ-Gd ₂ Si ₂ O ₇ for Solid-State Lighting. Journal of Physical Chemistry C, 2014, 118, 18035-18043.	1.5	38
59	HoF ₃ and DyF ₃ Nanoparticles as Contrast Agents for Highâ€Field Magnetic Resonance Imaging. Particle and Particle Systems Characterization, 2017, 34, 1700116.	1.2	38
60	The effects of the NaF flux on the oxidation state and localisation of praseodymium in Pr-doped zircon pigments. Journal of the European Ceramic Society, 1999, 19, 641-648.	2.8	37
61	Hydrothermal synthesis of Co-doped willemite powders with controlled particle size and shape. Journal of the European Ceramic Society, 2005, 25, 3165-3172.	2.8	37
62	Ligand-Free Synthesis of Tunable Size Ln:BaGdF5 (Ln = Eu3+ and Nd3+) Nanoparticles: Luminescence, Magnetic Properties, and Biocompatibility. Langmuir, 2016, 32, 411-420.	1.6	36
63	Morphology control of uniform CaMoO ₄ microarchitectures and development of white light emitting phosphors by Ln doping (Ln = Dy ³⁺ , Eu ³⁺). CrystEngComm, 2017, 19, 1590-1600.	1.3	36
64	Chemical state and distribution of Mn ions in Mn-doped α-Al 2 O 3 solid solutions prepared in the absence and the presence of fluxes. Journal of the European Ceramic Society, 2004, 24, 3057-3062.	2.8	35
65	Uniform YF3:Yb,Er up-conversion nanophosphors of various morphologies synthesized in polyol media through an ionic liquid. Journal of Nanoparticle Research, 2010, 12, 2553-2565.	0.8	35
66	Ar stabilisation of the cubic/tetragonal phases of ZrO2 in thin films prepared by ion beam induced chemical vapour deposition. Thin Solid Films, 2001, 389, 34-42.	0.8	34
67	Revealing the substitution mechanism in Eu ³⁺ :CaMoO ₄ and Eu ³⁺ ,Na ⁺ :CaMoO ₄ phosphors. Journal of Materials Chemistry C, 2018, 6, 12830-12840.	2.7	34
68	Spectroscopic Studies on the Localization of Vanadium(IV) in Vanadiumâ€Đoped Zircon Pigments. Journal of the American Ceramic Society, 1998, 81, 395-400.	1.9	32
69	Synthesis and Structure Resolution of RbLaF4. Inorganic Chemistry, 2012, 51, 2272-2282.	1.9	32
70	Preparation by pyrolysis of aerosols and structural characterization of Fe-doped mullite powders. Materials Research Bulletin, 2000, 35, 775-788.	2.7	30
71	Low-temperature preparation and structural characterization of Pr-doped ceria solid solutions. Journal of Materials Research, 2002, 17, 797-804.	1.2	30
72	Small Particle-Size Talc Is Associated with Poor Outcome and Increased Inflammation in Thoracoscopic Pleurodesis. Respiration, 2013, 86, 201-209.	1.2	30

#	Article	IF	CITATIONS
73	Journal Spherical Mullite Particles Prepared by Hydrolysis of Aerosols. Journal of the American Ceramic Society, 1993, 76, 2081-2085.	1.9	29
74	Preparation of Blue Vanadium-Zircon Pigments by Aerosols Hydrolysis. Journal of the American Ceramic Society, 1995, 78, 1147-1152.	1.9	28
75	Preparation and characterization of uniform spherical silica particles coated with Ni and Co compounds. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 157, 315-324.	2.3	28
76	Uniform Nanosized Goethite Particles Obtained by Aerial Oxidation in the FeSO4–Na2CO3 System. Journal of Colloid and Interface Science, 2002, 254, 87-94.	5.0	28
77	Solventâ€Controlled Synthesis and Luminescence Properties of Uniform Eu:YVO ₄ Nanophosphors with Different Morphologies. European Journal of Inorganic Chemistry, 2013, 2013, 1301-1309.	1.0	27
78	Europium-doped NaGd(WO ₄) ₂ nanophosphors: synthesis, luminescence and their coating with fluorescein for pH sensing. Dalton Transactions, 2017, 46, 11575-11583.	1.6	26
79	Spherical iron/silica nanocomposites from core-shell particles. Journal of Colloid and Interface Science, 2006, 294, 355-361.	5.0	25
80	Preparation and characterization of uniform nanocrystalline prismatic SnO2 particles. Materials Letters, 1991, 12, 32-36.	1.3	24
81	Environmentally responsive nanoparticle-based luminescent optical resonators. Nanoscale, 2010, 2, 936.	2.8	24
82	Preparation by hydrolysis of aerosols and colour properties of Cr-doped and Co-doped zircon powders. Journal of the European Ceramic Society, 1998, 18, 821-830.	2.8	23
83	Crystal Structure and Luminescent Properties of Eu3+-Doped A-La2Si2O7Tetragonal Phase Stabilized by Spray Pyrolysis Synthesis. Journal of Physical Chemistry C, 2013, 117, 20876-20886.	1.5	23
84	Synthesis of Spherical Down―and Upâ€Conversion NaYF ₄ â€Based Nanophosphors with Tunable Size in Ethylene Glycol without Surfactants or Capping Additives. European Journal of Inorganic Chemistry, 2008, 2008, 4517-4524.	1.0	22
85	Brown ceramic pigments based on chromium(III)-doped titanite obtained by spray pyrolysis. Dyes and Pigments, 2008, 79, 265-269.	2.0	21
86	Multifunctional Eu-doped NaGd(MoO ₄) ₂ nanoparticles functionalized with poly(<scp>l</scp> -lysine) for optical and MRI imaging. Dalton Transactions, 2016, 45, 16354-16365.	1.6	21
87	Photonic Tuning of the Emission Color of Nanophosphor Films Processed at High Temperature. Advanced Optical Materials, 2017, 5, 1700099.	3.6	21
88	The Nature of Co in Synthetic Co-substituted Goethites. Clays and Clay Minerals, 2004, 52, 760-766.	0.6	21
89	Origin of color in aerosol-derived vanadium-doped zirconia pigments. Journal of Materials Research, 1998, 13, 413-420.	1.2	20
90	Synthesis by pyrolysis of aerosols and ceramic application of Cr-doped CaYAlO4 red–orange pigments. Journal of the European Ceramic Society, 2009, 29, 2193-2198.	2.8	20

#	Article	IF	CITATIONS
91	A facile single-step procedure for the synthesis of luminescent Ln3+:YVO4 (Ln=Eu or Er+Yb)-silica nanocomposites. Materials Chemistry and Physics, 2011, 125, 224-230.	2.0	20
92	Persistent luminescent nanoparticles: Challenges and opportunities for a shimmering future. Journal of Applied Physics, 2021, 130, .	1.1	20
93	Photophysics of Rhodamine 6C-Doped TiO2 Particles during Drying Using Steady-State Spectroscopy and Variable-Frequency Phase and Modulation Data. Langmuir, 1994, 10, 2683-2687.	1.6	19
94	Iron oxide thin films prepared by ion beam induced chemical vapor deposition: Structural characterization by infrared spectroscopy. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2000, 18, 2244.	0.9	19
95	Persistent luminescence of transparent ZnGa ₂ O ₄ :Cr ³⁺ thin films from colloidal nanoparticles of tunable size. Journal of Materials Chemistry C, 2021, 9, 4474-4485.	2.7	19
96	Preparation of uniform colloidal dispersions by chemical reactions in aerosols—V. Tin(IV) oxide. Journal of Aerosol Science, 1990, 21, 811-820.	1.8	18
97	One‣tep Synthesis and Polyacrylic Acid Functionalization of Multifunctional Europiumâ€Đoped NaCdF ₄ Nanoparticles with Selected Size for Optical and MRI Imaging. European Journal of Inorganic Chemistry, 2014, 2014, 6075-6084.	1.0	18
98	Template-free synthesis and luminescent properties of hollow Ln:YOF (Ln = Eu or Er + Yb) microspheres. Journal of Alloys and Compounds, 2015, 619, 44-51.	2.8	18
99	Synthesis, functionalization and properties of uniform europium-doped sodium lanthanum tungstate and molybdate (NaLa(XO4)2, X = Mo,W) probes for luminescent and X-ray computed tomography bioimaging. Journal of Colloid and Interface Science, 2019, 554, 520-530.	5.0	18
100	Enhancing Luminescence and X-ray Absorption Capacity of Eu ³⁺ :LaF ₃ Nanoparticles by Bi ³⁺ Codoping. ACS Omega, 2019, 4, 765-774.	1.6	18
101	Uniform Poly(acrylic acid)â€Functionalized Lanthanideâ€Doped LaVO ₄ Nanophosphors with High Colloidal Stability and Biocompatibility. European Journal of Inorganic Chemistry, 2015, 2015, 4546-4554.	1.0	17
102	Room temperature synthesis of water-dispersible Ln 3+ :CeF 3 (Ln = Nd, Tb) nanoparticles with different morphology as bimodal probes for fluorescence and CT imaging. Journal of Colloid and Interface Science, 2018, 520, 134-144.	5.0	16
103	Biocompatibility assessment of up-and down-converting nanoparticles: implications of interferences with <i>in vitro</i> assays. Methods and Applications in Fluorescence, 2019, 7, 014001.	1.1	16
104	Preparation and optical properties of spherical metal oxide particles containing fluorescent dyes. Journal of Non-Crystalline Solids, 1992, 147-148, 621-626.	1.5	15
105	Amorphisation and related structural effects in thin films prepared by ion beam assisted methods. Surface and Coatings Technology, 2000, 125, 116-123.	2.2	15
106	Synthesis of acicular Fe–Co nanoparticles and the effect of Al addition on their magnetic properties. Nanotechnology, 2004, 15, S190-S196.	1.3	15
107	Phase delay and group velocity determination at a planar defect state in three dimensional photonic crystals. Applied Physics Letters, 2007, 90, 101113.	1.5	15
108	Synthesis of Cr-doped CaTiSiO5 ceramic pigments by spray drying. Materials Research Bulletin, 2009, 44, 918-924.	2.7	15

#	Article	IF	CITATIONS
109	Crystal Structures and Photoluminescence across the La ₂ Si ₂ O ₇ –Ho ₂ Si ₂ O ₇ System. Inorganic Chemistry, 2013, 52, 13469-13479.	1.9	15
110	Holmium phosphate nanoparticles as negative contrast agents for high-field magnetic resonance imaging: Synthesis, magnetic relaxivity study and in vivo evaluation. Journal of Colloid and Interface Science, 2021, 587, 131-140.	5.0	15
111	Effect of precursor impurities on the magnetic properties of uniform Î ³ -Fe2O3 ellipsoidal particles. Physical Chemistry Chemical Physics, 1999, 1, 4465-4471.	1.3	14
112	Uniform Elongated Colloidal HfO2 Particles. Journal of Colloid and Interface Science, 1994, 163, 262-268.	5.0	13
113	Magnetic Iron Oxide/Mullite Nanocomposite Stable up to 1400°C. Journal of Solid State Chemistry, 2000, 155, 458-462.	1.4	13
114	FeCo magnetic nanoneedles obtained by Co-coating haematite. Nanotechnology, 2005, 16, 647-654.	1.3	13
115	Preparation and Characterization of Uniform Needle-like Particles of Nickel Basic Sulfate. Journal of Colloid and Interface Science, 2000, 228, 259-262.	5.0	12
116	Fine spherical particles of narrow size distribution in the Cr2O3-Al2O3 system. Journal of Materials Science, 2001, 36, 2383-2389.	1.7	12
117	Quick synthesis, functionalization and properties of uniform, luminescent LuPO4-based nanoparticles. RSC Advances, 2015, 5, 34517-34524.	1.7	12
118	Dysprosium and Holmium Vanadate Nanoprobes as High-Performance Contrast Agents for High-Field Magnetic Resonance and Computed Tomography Imaging. Inorganic Chemistry, 2021, 60, 152-160.	1.9	12
119	LaPO4:Er microspheres with high NIR luminescent quantum yield. Materials Chemistry and Physics, 2013, 138, 666-671.	2.0	11
120	Uniform, luminescent Eu:LuF3 nanoparticles. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	11
121	Acicular Metallic Particles Obtained from Al-Doped Goethite Precursors. Chemistry of Materials, 2003, 15, 951-957.	3.2	10
122	Highly Versatile Upconverting Oxyfluoride-Based Nanophosphor Films. ACS Applied Materials & Interfaces, 2021, 13, 30051-30060.	4.0	10
123	Bimodal Nd-Doped LuVO4 Nanoprobes Functionalized with Polyacrilic Acid for X-Ray Computed Tomography and NIR Luminescent Imaging. Nanomaterials, 2020, 10, 149.	1.9	10
124	Continuous production of spherical strontium titanate at low temperature. Journal of Materials Science Letters, 1990, 9, 772-773.	0.5	9
125	Preparation of uniform colloidal particles of hafnium compounds. Journal of Materials Chemistry, 1991, 1, 87-90.	6.7	9
126	Structural modifications produced by the incorporation of Ar within the lattice of Fe2O3 thin films prepared by ion beam induced chemical vapour deposition. Acta Materialia, 2000, 48, 4555-4561.	3.8	9

#	Article	IF	CITATIONS
127	Preparation and properties of uniform praseodymium-doped ceria colloidal particles. Colloid and Polymer Science, 2002, 280, 274-281.	1.0	9
128	Analysis of texture and microstructure of anatase thin films by Fourier transform infrared spectroscopy. Thin Solid Films, 2006, 515, 1585-1591.	0.8	9
129	Synthesis and functionalization of biocompatible Tb:CePO4 nanophosphors with spindle-like shape. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	9
130	Energy transfer efficiency in YF3 nanocrystals: Quantifying the Yb3+ to Tm3+ infrared dynamics. Journal of Applied Physics, 2013, 113, .	1.1	9
131	Crystal structure, NIR luminescence and X-ray computed tomography of Nd3+:Ba0.3Lu0.7F2.7 nanospheres. Dalton Transactions, 2017, 46, 6580-6587.	1.6	9
132	Aerosol-derived Mn-doped Al2O3 pink pigments prepared in the absence of fluxes. Dyes and Pigments, 2004, 61, 279-286.	2.0	8
133	Luminescent Eu-doped GdVO4 nanocrystals as optical markers for anti-counterfeiting purposes. Chemical Papers, 2017, 71, 149-159.	1.0	8
134	Synthesis and Structural Characterization by Xâ€ray Absorption Spectroscopy of Tinâ€Đoped Mullite Solid Solutions. Journal of the American Ceramic Society, 2002, 85, 1910-1914.	1.9	7
135	Up-conversion in Er3+/Yb3+ co-doped LaPO4 submicron-sized spheres. Optical Materials, 2015, 41, 104-107.	1.7	7
136	Design of a nanoprobe for high field magnetic resonance imaging, dual energy X-ray computed tomography and luminescent imaging. Journal of Colloid and Interface Science, 2020, 573, 278-286.	5.0	7
137	Spherical HfO2 particles obtained by hydrolysis of hafnium tert-butoxide. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1993, 79, 169-175.	2.3	5
138	The influence of protective coatings on the magnetic properties of acicular iron nanoparticles. Nanotechnology, 2006, 17, 1421-1427.	1.3	5
139	Microemulsionâ€Mediated Synthesis and Properties of Uniform Ln:CaWO ₄ (Ln = Eu, Dy) Nanophosphors with Multicolor Luminescence for Optical and CT Imaging. European Journal of Inorganic Chemistry, 2017, 2017, 5158-5168.	1.0	5
140	NaY(MoO ₄) ₂ -based nanoparticles: synthesis, luminescence and photocatalytic properties. Dalton Transactions, 2021, 50, 16539-16547.	1.6	5
141	Highly uniform Y ₃ Al ₂ Ga ₃ O ₁₂ -based nanophosphors for persistent luminescence bioimaging in the visible and NIR regions. Inorganic Chemistry Frontiers, 2022, 9, 2454-2461.	3.0	5
142	Deposition of silica protected luminescent layers of Eu:GdVO4 nanoparticles assisted by atmospheric pressure plasma jet. Thin Solid Films, 2016, 598, 88-94.	0.8	4
143	Synthesis and optical properties of environmentally benign and highly uniform NaCe(MoO4)2 based yellow nanopigments. Journal of Alloys and Compounds, 2018, 739, 542-548.	2.8	4
144	Luminescence and X-ray Absorption Properties of Uniform Eu3+:(H3O)Lu3F10 Nanoprobes. Nanomaterials, 2019, 9, 1153.	1.9	4

#	Article	IF	CITATIONS
145	Preparation by hydrolysis of aerosols and properties of Cr, Mn and Co doped alumina spherical particles. Colloid and Polymer Science, 1997, 275, 1010-1017.	1.0	3
146	Angular emission properties of a layer of rare-earth based nanophosphors embedded in one-dimensional photonic crystal coatings. Applied Physics Letters, 2011, 99, 051111.	1.5	3
147	Encapsulation of Upconversion Nanoparticles in Periodic Mesoporous Organosilicas. Molecules, 2019, 24, 4054.	1.7	3
148	Improving Co distribution in acicular Fe–Co nanoparticles and its effect on their magnetic properties. Nanotechnology, 2007, 18, 205601.	1.3	2
149	Structural, optical and X-ray attenuation properties of Tb ³⁺ :Ba _x Ce _{1â^'x} F _{3â^'x} (<i>x</i> = 0.18–0.48) nanospheres synthesized in polyol medium. Dalton Transactions, 2018, 47, 8382-8391.	51.6	2
150	Enhanced power conversion efficiency in solar cells coupled to photonic crystals. Proceedings of SPIE, 2007, , .	0.8	1
151	Neodymium doped lanthanide fluoride nanoparticles as contrast agents for luminescent bioimaging and X-ray computed tomography. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2021, , .	0.9	1
152	All-nanoparticle-based optical resonators for detection of gases and liquids. , 2010, , .		0