Torben Moos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2389152/publications.pdf

Version: 2024-02-01

53660 69108 6,785 95 45 77 citations h-index g-index papers 102 102 102 8680 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A comprehensive overview of exosomes as drug delivery vehicles â€" Endogenous nanocarriers for targeted cancer therapy. Biochimica Et Biophysica Acta: Reviews on Cancer, 2014, 1846, 75-87.	3.3	430
2	Iron trafficking inside the brain. Journal of Neurochemistry, 2007, 103, 1730-1740.	2.1	363
3	Proteasomal Inhibition by α-Synuclein Filaments and Oligomers. Journal of Biological Chemistry, 2004, 279, 12924-12934.	1.6	341
4	Transferrin and transferrin receptor function in brain barrier systems. Cellular and Molecular Neurobiology, 2000, 20, 77-95.	1.7	313
5	The vascular basement membrane in the healthy and pathological brain. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 3300-3317.	2.4	306
6	The Metabolism of Neuronal Iron and Its Pathogenic Role in Neurological Disease: Review. Annals of the New York Academy of Sciences, 2004, 1012, 14-26.	1.8	211
7	Targeting the transferrin receptor for brain drug delivery. Progress in Neurobiology, 2019, 181, 101665.	2.8	204
8	p25α Stimulates α-Synuclein Aggregation and Is Co-localized with Aggregated α-Synuclein in α-Synucleinopathies. Journal of Biological Chemistry, 2005, 280, 5703-5715.	1.6	173
9	Strongly compromised inflammatory response to brain injury in interleukin-6-deficient mice. , 1999, 25, 343-357.		171
10	Targeting transferrin receptors at the blood-brain barrier improves the uptake of immunoliposomes and subsequent cargo transport into the brain parenchyma. Scientific Reports, 2017, 7, 10396.	1.6	171
11	Immunohistochemical localization of intraneuronal transferrin receptor immunoreactivity in the adult mouse central nervous system., 1996, 375, 675-692.		149
12	CNS Wound Healing Is Severely Depressed in Metallothionein I- and II-Deficient Mice. Journal of Neuroscience, 1999, 19, 2535-2545.	1.7	147
13	Targeting Antiâ€"Transferrin Receptor Antibody (OX26) and OX26-Conjugated Liposomes to Brain Capillary Endothelial Cells Using In Situ Perfusion. Journal of Cerebral Blood Flow and Metabolism, 2004, 24, 1193-1204.	2.4	146
14	Restricted transport of anti-transferrin receptor antibody (OX26) through the blood-brain barrier in the rat. Journal of Neurochemistry, 2008, 79, 119-129.	2.1	138
15	Evaluation of electroporation-induced adverse effects on adipose-derived stem cell exosomes. Cytotechnology, 2016, 68, 2125-2138.	0.7	131
16	CXCL10 Is the Key Ligand for CXCR3 on CD8+ Effector T Cells Involved in Immune Surveillance of the Lymphocytic Choriomeningitis Virus-Infected Central Nervous System. Journal of Immunology, 2006, 176, 4235-4243.	0.4	129
17	VCAM-1 directed immunoliposomes selectively target tumor vasculature in vivo. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 854-863.	1.4	129
18	Iron deposits in the chronically inflamed central nervous system and contributes to neurodegeneration. Cellular and Molecular Life Sciences, 2014, 71, 1607-1622.	2.4	124

#	Article	IF	CITATIONS
19	Modulating the antibody density changes the uptake and transport at the blood-brain barrier of both transferrin receptor-targeted gold nanoparticles and liposomal cargo. Journal of Controlled Release, 2019, 295, 237-249.	4.8	112
20	A Triple Culture Model of the Blood-Brain Barrier Using Porcine Brain Endothelial cells, Astrocytes and Pericytes. PLoS ONE, 2015, 10, e0134765.	1.1	111
21	Evidence for low molecular weight, non-transferrin-bound iron in rat brain and cerebrospinal fluid. , 1998, 54, 486-494.		105
22	Revisiting nanoparticle technology for blood–brain barrier transport: Unfolding at the endothelial gate improves the fate of transferrin receptor-targeted liposomes. Journal of Controlled Release, 2016, 222, 32-46.	4.8	105
23	The significance of the mutated divalent metal transporter (DMT1) on iron transport into the Belgrade rat brain. Journal of Neurochemistry, 2004, 88, 233-245.	2.1	104
24	Antibody affinity and valency impact brain uptake of transferrin receptor-targeted gold nanoparticles. Theranostics, 2018, 8, 3416-3436.	4.6	101
25	Divalent metal transporter 1 (DMT1) in the brain: implications for a role in iron transport at the blood-brain barrier, and neuronal and glial pathology. Frontiers in Molecular Neuroscience, 2015, 8, 19.	1.4	97
26	Efficient T-Cell Surveillance of the CNS Requires Expression of the CXC Chemokine Receptor 3. Journal of Neuroscience, 2004, 24, 4849-4858.	1.7	88
27	Neurodegeneration with inflammation is accompanied by accumulation of iron and ferritin in microglia and neurons. Neurobiology of Disease, 2015, 81, 108-118.	2.1	87
28	Expression of Iron-Related Proteins at the Neurovascular Unit Supports Reduction and Reoxidation of Iron for Transport Through the Blood-Brain Barrier. Molecular Neurobiology, 2016, 53, 7237-7253.	1.9	81
29	Metallothionein (MT)-III: Generation of Polyclonal Antibodies, Comparison With MT-I+II in the Freeze Lesioned Rat Brain and in a Bioassay With Astrocytes, and Analysis of Alzheimer's Disease Brains. Journal of Neurotrauma, 1999, 16, 1115-1129.	1.7	79
30	Brain capillary endothelial cells mediate iron transport into the brain by segregating iron from transferrin without the involvement of divalent metal transporter 1. Journal of Neurochemistry, 2006, 98, 1946-1958.	2.1	79
31	Expression of the neuronal transferrin receptor is age dependent and susceptible to iron deficiency. Journal of Comparative Neurology, 1998, 398, 420-430.	0.9	77
32	Targeted drug delivery to the brain using magnetic nanoparticles. Therapeutic Delivery, 2015, 6, 1145-1155.	1.2	74
33	Disruption of the blood-brain interface in neonatal rat neocortex induces a transient expression of metallothionein in reactive astrocytes. Glia, 1995, 13, 217-227.	2.5	68
34	Synthesis and deposition of basement membrane proteins by primary brain capillary endothelial cells in a murine model of the blood–brain barrier. Journal of Neurochemistry, 2017, 140, 741-754.	2.1	67
35	Gene delivery by pullulan derivatives in brain capillary endothelial cells for protein secretion. Journal of Controlled Release, 2011, 151, 45-50.	4.8	66
36	On the use of liposome controls in studies investigating the clinical potential of extracellular vesicle-based drug delivery systems – A commentary. Journal of Controlled Release, 2018, 269, 10-14.	4.8	66

#	Article	IF	Citations
37	Impairment of Interrelated Iron- and Copper Homeostatic Mechanisms in Brain Contributes to the Pathogenesis of Neurodegenerative Disorders. Frontiers in Pharmacology, 2012, 3, 169.	1.6	65
38	Macromolecular drug transport into the brain using targeted therapy. Journal of Neurochemistry, 2010, 113, 1-13.	2.1	62
39	Kinetics and distribution of [59Fe–125I]transferrin injected into the ventricular system of the rat. Brain Research, 1998, 790, 115-128.	1.1	58
40	Impaired Inflammatory Response to Glial Cell Death in Genetically Metallothionein-I- and -II-Deficient Mice. Experimental Neurology, 1999, 156, 149-164.	2.0	58
41	Post-capillary venules are the key locus for transcytosis-mediated brain delivery of therapeutic nanoparticles. Nature Communications, 2021, 12, 4121.	5.8	58
42	Ferroportin in the Postnatal Rat Brain: Implications for Axonal Transport and Neuronal Export of Iron. Seminars in Pediatric Neurology, 2006, 13, 149-157.	1.0	56
43	Bloodâ€brain barrier transport using a high affinity, brainâ€selective VNAR antibody targeting transferrin receptor 1. FASEB Journal, 2021, 35, e21172.	0.2	56
44	Mechanism and Developmental Changes in Iron Transport across the Blood-Brain Barrier. Developmental Neuroscience, 2002, 24, 106-113.	1.0	53
45	A Morphological Study of the Developmentally Regulated Transport of Iron into the Brain. Developmental Neuroscience, 2002, 24, 99-105.	1.0	50
46	P25?/Tubulin polymerization promoting protein expression by myelinating oligodendrocytes of the developing rat brain. Journal of Neurochemistry, 2006, 99, 333-342.	2.1	50
47	Heterogenous distribution of ferroportin-containing neurons in mouse brain. BioMetals, 2011, 24, 357-375.	1.8	48
48	Opposing Effects of CXCR3 and CCR5 Deficiency on CD8+ T Cell-Mediated Inflammation in the Central Nervous System of Virus-Infected Mice. Journal of Immunology, 2005, 175, 1767-1775.	0.4	47
49	Targeted Antiepidermal Growth Factor Receptor (Cetuximab) Immunoliposomes Enhance Cellular Uptake <i>In Vitro</i> and Exhibit Increased Accumulation in an Intracranial Model of Glioblastoma Multiforme. Journal of Drug Delivery, 2013, 2013, 1-13.	2.5	46
50	Ubxd1 is a novel co-factor of the human p97 ATPase. International Journal of Biochemistry and Cell Biology, 2008, 40, 2927-2942.	1.2	42
51	Transfection of brain capillary endothelial cells in primary culture with defined blood–brain barrier properties. Fluids and Barriers of the CNS, 2015, 12, 19.	2.4	39
52	Fulminant Lymphocytic Choriomeningitis Virus-Induced Inflammation of the CNS Involves a Cytokine-Chemokine-Cytokine-Chemokine Cascade. Journal of Immunology, 2009, 182, 1079-1087.	0.4	37
53	Expression of ferritin protein and subunit mRNAs in normal and iron deficient rat brain. Molecular Brain Research, 1999, 65, 186-197.	2.5	36
54	The choroid plexus as a site of damage in hemorrhagic and ischemic stroke and its role in responding to injury. Fluids and Barriers of the CNS, 2017, 14, 8.	2.4	35

#	Article	IF	CITATIONS
55	Increased astrocytic expression of metallothioneins I+II in brainstem of adult rats treated with 6-aminonicotinamide. Brain Research, 1997, 774, 256-259.	1.1	34
56	Age-dependent change in Vitamin C status: A phenomenon of maturation rather than of ageing. Mechanisms of Ageing and Development, 2005, 126, 892-898.	2.2	32
57	The blood-brain barrier studied in vitro across species. PLoS ONE, 2021, 16, e0236770.	1.1	31
58	Developmental profile of non-heme iron distribution in the rat brain during ontogenesis. Developmental Brain Research, 1995, 87, 203-213.	2.1	30
59	<scp>C</scp> ripto†Expression in Glioblastoma Multiforme. Brain Pathology, 2014, 24, 360-370.	2.1	28
60	Chronic Vitamin <scp>C</scp> Deficiency does not Accelerate Oxidative Stress in Ageing Brains of Guinea Pigs. Basic and Clinical Pharmacology and Toxicology, 2012, 110, 524-529.	1.2	24
61	Bidirectional apical–basal traffic of the cation-independent mannose-6-phosphate receptor in brain endothelial cells. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 2598-2613.	2.4	23
62	Impairment of the Developing Human Brain in Iron Deficiency: Correlations to Findings in Experimental Animals and Prospects for Early Intervention Therapy. Pharmaceuticals, 2019, 12, 120.	1.7	19
63	Age-dependent uptake and retrograde axonal transport of exogenous albumin and transferrin in rat motor neurons. Brain Research, 1995, 672, 14-23.	1.1	18
64	Evaluation of Targeted Delivery to the Brain Using Magnetic Immunoliposomes and Magnetic Force. Materials, 2019, 12, 3576.	1.3	18
65	Novel Blood-Derived Extracellular Vesicle-Based Biomarkers in Alzheimer's Disease Identified by Proximity Extension Assay. Biomedicines, 2020, 8, 199.	1.4	18
66	Brain Delivery Systems via Mechanism Independent of Receptor-Mediated Endocytosis and Adsorptive-Mediated Endocytosis. Current Pharmaceutical Biotechnology, 2012, 13, 2349-2354.	0.9	16
67	Developmental iron uptake and axonal transport in the retina of the rat. Molecular and Cellular Neurosciences, 2011, 46, 607-613.	1.0	15
68	Development of a Novel Lipophilic, Magnetic Nanoparticle for in Vivo Drug Delivery. Pharmaceutics, 2013, 5, 246-260.	2.0	14
69	Nerve Growth Factor Receptor Expression in Heterotransplanted Vestibular Schwannoma in Athymic Nude Mice. Acta Oto-Laryngologica, 1996, 116, 59-63.	0.3	13
70	Oxidative stress and damage in liver, but not in brain, of fischer 344 rats subjected to dietary iron supplementation with lipidâ€soluble [(3,5,5â€trimethylhexanoyl)ferrocene]. Journal of Biochemical and Molecular Toxicology, 2007, 21, 145-155.	1.4	12
71	Transfection of primary brain capillary endothelial cells for protein synthesis and secretion of recombinant erythropoietin: a strategy to enable protein delivery to the brain. Cellular and Molecular Life Sciences, 2017, 74, 2467-2485.	2.4	12
72	Iron deficiency and iron treatment in the fetal developing brain $\hat{a}\in$ " a pilot study introducing an experimental rat model. Reproductive Health, 2018, 15, 93.	1.2	12

#	Article	IF	Citations
73	Conventional Treatment of Glioblastoma Reveals Persistent CD44+ Subpopulations. Molecular Neurobiology, 2020, 57, 3943-3955.	1.9	12
74	Astrocytic expression of ZIP14 (SLC39A14) is part of the inflammatory reaction in chronic neurodegeneration with iron overload. Glia, 2020, 68, 1810-1823.	2.5	12
7 5	Immunocytochemical evidence for retrograde axonal transport of exogenous albumin in adult rat brain stem motor neurons. Neuroscience Letters, 1991, 127, 1-4.	1.0	11
76	The Endo-Lysosomal System of Brain Endothelial Cells Is Influenced by Astrocytes In Vitro. Molecular Neurobiology, 2018, 55, 8522-8537.	1.9	11
77	Gene therapy to the blood–brain barrier with resulting protein secretion as a strategy for treatment of Niemann Picks type C2 disease. Journal of Neurochemistry, 2021, 156, 290-308.	2.1	11
78	Simultaneous application of Timm's sulphide silver method and immunofluorescence histochemistry. Journal of Neuroscience Methods, 1993, 48, 149-156.	1.3	10
79	Geographical Variation in Antipsychotic Drug Use in Elderly Patients with Dementia: A Nationwide Study. Journal of Alzheimer's Disease, 2016, 54, 1183-1192.	1.2	10
80	Accessing Targeted Nanoparticles to the Brain: The Vascular Route. Current Medicinal Chemistry, 2014, 21, 4092-4099.	1.2	10
81	Effect of iron status on DMT1 expression in duodenal enterocytes from β2-microglobulin knockout mice. American Journal of Physiology - Renal Physiology, 2002, 283, G687-G694.	1.6	9
82	Handling iron in restorative neuroscience. Neural Regeneration Research, 2015, 10, 1558.	1.6	9
83	Delivery of transferrin and immunoglobulins to the ventricular system of the rat. Frontiers in Bioscience - Landmark, 2003, 8, a102-109.	3.0	8
84	Absence of prostate apoptosis response-4 protein in substantia nigra of Parkinson's disease autopsies. Acta Neuropathologica, 2004, 107, 23-26.	3.9	8
85	Sortilin regulates blood–brain barrier integrity. FEBS Journal, 2022, 289, 1062-1079.	2,2	7
86	GAP43 identifies developing muscle cells in human embryos. NeuroReport, 1993, 4, 1299-1302.	0.6	6
87	Metal-Dependent Regulation of ATP7A and ATP7B in Fibroblast Cultures. Frontiers in Molecular Neuroscience, 2016, 9, 68.	1.4	5
88	Hepcidin Mediates Transcriptional Changes in Ferroportin mRNA in Differentiated Neuronal-Like PC12 Cells Subjected to Iron Challenge. Molecular Neurobiology, 2019, 56, 2362-2374.	1.9	4
89	Epigenetic Regulation of Ferroportin in Primary Cultures of the Rat Blood-Brain Barrier. Molecular Neurobiology, 2020, 57, 3526-3539.	1.9	4
90	Strongly compromised inflammatory response to brain injury in interleukin-6-deficient mice., 1999, 25, 343.		4

TORBEN MOOS

#	Article	IF	CITATIONS
91	A novel strategy for delivering <scp>N < /scp>iemann†< scp>P < /scp>ick type < scp>C2 < /scp>proteins across the blood†"brain barrier using the brain endothelial†specific < scp>AAVâ€BR1 < /scp>virus. Journal of Neurochemistry, 2023, 164, 6-28.</scp>	2.1	4
92	The Significance of the Choroid Plexus for Cerebral Iron Homeostasis. Physiology in Health and Disease, 2020, , 125-148.	0.2	3
93	Iron-Metabolism in Neurons of the Motor System of the Central Nervous System: Lessons from Iron Deficiency and Overloading Pathologies. , 2009, , 181-193.		1
94	Transport of Transferrin Receptor-Targeted Antibodies Through the Blood-Brain Barrier for Drug Delivery to the Brain. AAPS Advances in the Pharmaceutical Sciences Series, 2022, , 527-549.	0.2	1
95	Retrograde axonal transport of albumin-gold complex in rat motor neurons: A light and electron microscopic study. Micron and Microscopica Acta, 1992, 23, 111-112.	0.2	0