
Wesley I Sundquist

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2388937/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tsg101 and the Vacuolar Protein Sorting Pathway Are Essential for HIV-1 Budding. Cell, 2001, 107, 55-65.	13.5	1,265
2	The Protein Network of HIV Budding. Cell, 2003, 114, 701-713.	13.5	771
3	Crystal Structure of Human Cyclophilin A Bound to the Amino-Terminal Domain of HIV-1 Capsid. Cell, 1996, 87, 1285-1294.	13.5	686
4	Specific recognition and accelerated uncoating of retroviral capsids by the TRIM5Â restriction factor. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 5514-5519.	3.3	653
5	Human ESCRT and ALIX proteins interact with proteins of the midbody and function in cytokinesis. EMBO Journal, 2007, 26, 4215-4227.	3.5	613
6	HIV-1 Assembly, Budding, and Maturation. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a006924-a006924.	2.9	605
7	Assembly and Analysis of Conical Models for the HIV-1 Core. Science, 1999, 283, 80-83.	6.0	601
8	Structure of the Carboxyl-Terminal Dimerization Domain of the HIV-1 Capsid Protein. Science, 1997, 278, 849-853.	6.0	559
9	X-Ray Structures of the Hexameric Building Block of the HIV Capsid. Cell, 2009, 137, 1282-1292.	13.5	474
10	Image reconstructions of helical assemblies of the HIV-1 CA protein. Nature, 2000, 407, 409-413.	13.7	461
11	Formation of a Human Immunodeficiency Virus Type 1 Core of Optimal Stability Is Crucial for Viral Replication. Journal of Virology, 2002, 76, 5667-5677.	1.5	461
12	Virus Budding and the ESCRT Pathway. Cell Host and Microbe, 2013, 14, 232-241.	5.1	445
13	Functional Surfaces of the Human Immunodeficiency Virus Type 1 Capsid Protein. Journal of Virology, 2003, 77, 5439-5450.	1.5	383
14	ESCRT-III recognition by VPS4 ATPases. Nature, 2007, 449, 740-744.	13.7	293
15	Assembly Properties of the Human Immunodeficiency Virus Type 1 CA Protein. Journal of Virology, 2004, 78, 2545-2552.	1.5	281
16	Molecular recognition in the HIV-1 capsid/cyclophilin A complex 1 1Edited by J. A. Wells. Journal of Molecular Biology, 1997, 269, 780-795.	2.0	252
17	Hexagonal assembly of a restricting TRIM5α protein. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 534-539.	3.3	235
18	Structure and membrane remodeling activity of ESCRT-III helical polymers. Science, 2015, 350, 1548-1551.	6.0	230

#	Article	IF	CITATIONS
19	Membrane Fission Reactions of the Mammalian ESCRT Pathway. Annual Review of Biochemistry, 2013, 82, 663-692.	5.0	215
20	Ubiquitin Recognition by the Human TSG101 Protein. Molecular Cell, 2004, 13, 783-789.	4.5	212
21	Structures, Functions, and Dynamics of ESCRT-III/Vps4 Membrane Remodeling and Fission Complexes. Annual Review of Cell and Developmental Biology, 2018, 34, 85-109.	4.0	205
22	ALIX-CHMP4 interactions in the human ESCRT pathway. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 7687-7691.	3.3	204
23	Structural basis for ESCRT-III protein autoinhibition. Nature Structural and Molecular Biology, 2009, 16, 754-762.	3.6	203
24	ESCRT-III Protein Requirements for HIV-1 Budding. Cell Host and Microbe, 2011, 9, 235-242.	5.1	203
25	Structural and mechanistic studies of VPS4 proteins. EMBO Journal, 2005, 24, 3658-3669.	3.5	199
26	Clinical targeting of HIV capsid protein with a long-acting small molecule. Nature, 2020, 584, 614-618.	13.7	192
27	Human ESCRT-III and VPS4 proteins are required for centrosome and spindle maintenance. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 12889-12894.	3.3	183
28	Three-dimensional Structure of HIV-1 Virus-like Particles by Electron Cryotomography. Journal of Molecular Biology, 2005, 346, 577-588.	2.0	160
29	The tripartite motif coiled-coil is an elongated antiparallel hairpin dimer. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2494-2499.	3.3	158
30	Structure and ESCRT-III protein interactions of the MIT domain of human VPS4A. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 13813-13818.	3.3	157
31	Two Distinct Modes of ESCRT-III Recognition Are Required for VPS4 Functions in Lysosomal Protein Targeting and HIV-1 Budding. Developmental Cell, 2008, 15, 62-73.	3.1	151
32	LEM2 recruits CHMP7 for ESCRT-mediated nuclear envelope closure in fission yeast and human cells. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E2166-E2175.	3.3	149
33	Evidence for a New Viral Late-Domain Core Sequence, FPIV, Necessary for Budding of a Paramyxovirus. Journal of Virology, 2005, 79, 2988-2997.	1.5	141
34	Structural basis of protein translocation by the Vps4-Vta1 AAA ATPase. ELife, 2017, 6, .	2.8	123
35	Species-Specific Tropism Determinants in the Human Immunodeficiency Virus Type 1 Capsid. Journal of Virology, 2004, 78, 6005-6012.	1.5	119
36	Biochemical Analyses of Human IST1 and Its Function in Cytokinesis. Molecular Biology of the Cell, 2009, 20, 1360-1373.	0.9	119

#	Article	IF	CITATIONS
37	Designed proteins induce the formation of nanocage-containing extracellular vesicles. Nature, 2016, 540, 292-295.	13.7	113
38	Biochemical Characterization of a Recombinant TRIM5α Protein That Restricts Human Immunodeficiency Virus Type 1 Replication. Journal of Virology, 2008, 82, 11682-11694.	1.5	112
39	Discovery of Novel Small-Molecule HIV-1 Replication Inhibitors That Stabilize Capsid Complexes. Antimicrobial Agents and Chemotherapy, 2013, 57, 4622-4631.	1.4	107
40	A highly potent long-acting small-molecule HIV-1 capsid inhibitor with efficacy in a humanized mouse model. Nature Medicine, 2019, 25, 1377-1384.	15.2	104
41	Reconstitution and visualization of HIV-1 capsid-dependent replication and integration in vitro. Science, 2020, 370, .	6.0	99
42	The Role of LIP5 and CHMP5 in Multivesicular Body Formation and HIV-1 Budding in Mammalian Cells. Journal of Biological Chemistry, 2005, 280, 10548-10555.	1.6	93
43	<scp>TRIM</scp> 5α requires Ube2W to anchor Lys63â€inked ubiquitin chains and restrict reverse transcription. EMBO Journal, 2015, 34, 2078-2095.	3.5	89
44	Primate TRIM5 proteins form hexagonal nets on HIV-1 capsids. ELife, 2016, 5, .	2.8	87
45	Crystal structure of cyclophilin A complexed with a binding site peptide from the HIVâ€I capsid protein. Protein Science, 1997, 6, 2297-2307.	3.1	84
46	ULK3 regulates cytokinetic abscission by phosphorylating ESCRT-III proteins. ELife, 2015, 4, e06547.	2.8	81
47	Mechanism of B-box 2 domain-mediated higher-order assembly of the retroviral restriction factor TRIM5α. ELife, 2016, 5, .	2.8	81
48	The AAA ATPase Vps4 binds ESCRT-III substrates through a repeating array of dipeptide-binding pockets. ELife, 2017, 6, .	2.8	80
49	ESCRT-III CHMP2A and CHMP3 form variable helical polymers <i>in vitro</i> and act synergistically during HIV-1 budding. Cellular Microbiology, 2013, 15, 213-226.	1.1	78
50	Membrane constriction and thinning by sequential ESCRT-III polymerization. Nature Structural and Molecular Biology, 2020, 27, 392-399.	3.6	77
51	Cryo-EM Structure of Dodecameric Vps4p and Its 2:1 Complex with Vta1p. Journal of Molecular Biology, 2008, 377, 364-377.	2.0	68
52	Comparison of the NMR and Xâ€ray structures of the HIVâ€1 matrix protein: Evidence for conformational changes during viral assembly. Protein Science, 1996, 5, 2391-2398.	3.1	67
53	Biochemical and Structural Studies of Yeast Vps4 Oligomerization. Journal of Molecular Biology, 2008, 384, 878-895.	2.0	58
54	The Oligomeric State of the Active Vps4 AAA ATPase. Journal of Molecular Biology, 2014, 426, 510-525.	2.0	51

#	Article	IF	CITATIONS
55	Toward a sustainable biomedical research enterprise: Finding consensus and implementing recommendations. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10832-10836.	3.3	51
56	A cancer-associated polymorphism in ESCRT-III disrupts the abscission checkpoint and promotes genome instability. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E8900-E8908.	3.3	50
57	Activation of the Retroviral Budding Factor ALIX. Journal of Virology, 2011, 85, 9222-9226.	1.5	47
58	Angiomotin functions in HIV-1 assembly and budding. ELife, 2015, 4, .	2.8	42
59	Interactions of the Human LIP5 Regulatory Protein with Endosomal Sorting Complexes Required for Transport. Journal of Biological Chemistry, 2012, 287, 43910-43926.	1.6	41
60	Structure of Vps4 with circular peptides and implications for translocation of two polypeptide chains by AAA+ ATPases. ELife, 2019, 8, .	2.8	41
61	Structure of spastin bound to a glutamate-rich peptide implies a hand-over-hand mechanism of substrate translocation. Journal of Biological Chemistry, 2020, 295, 435-443.	1.6	38
62	Binding of Substrates to the Central Pore of the Vps4 ATPase Is Autoinhibited by the Microtubule Interacting and Trafficking (MIT) Domain and Activated by MIT Interacting Motifs (MIMs). Journal of Biological Chemistry, 2015, 290, 13490-13499.	1.6	35
63	How to Assemble a Capsid. Cell, 2007, 131, 17-19.	13.5	31
64	ESCRT requirements for EIAV budding. Retrovirology, 2013, 10, 104.	0.9	28
65	General Model for Retroviral Capsid Pattern Recognition by TRIM5 Proteins. Journal of Virology, 2018, 92, .	1.5	24
66	Membrane Remodeling: ESCRT-III Filaments as Molecular Garrotes. Current Biology, 2020, 30, R1425-R1428.	1.8	18
67	Vaccinia virus hijacks ESCRT-mediated multivesicular body formation for virus egress. Life Science Alliance, 2021, 4, e202000910.	1.3	15
68	Identification of abscission checkpoint bodies as structures that regulate ESCRT factors to control abscission timing. ELife, 2021, 10, .	2.8	14
69	An ESCRT to seal the envelope. Science, 2015, 348, 1314-1315.	6.0	10
70	What's in a name?. ELife, 2017, 6, .	2.8	10
71	Interactions between AMOT PPxY motifs and NEDD4L WW domains function in HIV-1 release. Journal of Biological Chemistry, 2021, 297, 100975.	1.6	8
72	RetroCHMP3 blocks budding of enveloped viruses without blocking cytokinesis. Cell, 2021, 184, 5419-5431.e16.	13.5	8

#	Article	IF	CITATIONS
73	Putting a finger in the ring. Nature Structural and Molecular Biology, 2014, 21, 1025-1027.	3.6	6
74	Retrovirus Restriction by TRIM5α: RINGside at a Cage Fight. Cell Host and Microbe, 2018, 24, 751-753.	5.1	3
75	Stephan Oroszlan and the Proteolytic Processing of Retroviral Proteins: Following A Pro. Viruses, 2021, 13, 2218.	1.5	2
76	Recurrent evolution of an inhibitor of ESCRT-dependent virus budding and LINE-1 retrotransposition in primates. Current Biology, 2022, 32, 1511-1522.e6.	1.8	2
77	Corrigendum to "The Polycomb-associated protein Rybp is a ubiquitin binding protein―[FEBS Lett. 580 (2006) 6233-6241]. FEBS Letters, 2006, 580, 6754-6754.	1.3	Ο
78	Molecular Mechanism of ESCRTâ€III Filament Formation. FASEB Journal, 2015, 29, 886.19.	0.2	0