Changhong Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/238888/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Excellent Energy Storage Performance in Bi(Fe0.93Mn0.05Ti0.02)O3 Modified CaBi4Ti4O15 Thin Film by Adjusting Annealing Temperature. Nanomaterials, 2022, 12, 730.	4.1	6
2	Coexistence of giant positive and large negative electrocaloric effects in lead-free ferroelectric thin film for continuous solid-state refrigeration. Nano Energy, 2021, 88, 106222.	16.0	13
3	4-inch Ternary BiFeO ₃ –BaTiO ₃ –SrTiO ₃ Thin Film Capacitor with High Energy Storage Performance. ACS Energy Letters, 2021, 6, 3873-3881.	17.4	39
4	Flexible Lead-Free Ba0.5Sr0.5TiO3/0.4BiFeO3-0.6SrTiO3 Dielectric Film Capacitor with High Energy Storage Performance. Nanomaterials, 2021, 11, 3065.	4.1	12
5	Flexible Leadâ€Free Perovskite Oxide Multilayer Film Capacitor Based on (Na _{0.8} K _{0.2}) _{0.5} Bi _{0.5} TiO ₃ /Ba _{0.5} Sr Highâ€Performance Dielectric Energy Storage. Advanced Energy Materials, 2020, 10, 1904229.	<s1\$250.5< td=""><td>(Ti<su< td=""></su<></td></s1\$250.5<>	(Ti <su< td=""></su<>
6	Bendable Bi(Fe0.95Mn0.05)O3 ferroelectric film directly on aluminum substrate. Journal of Alloys and Compounds, 2020, 827, 154381.	5.5	3
7	Flexible lead-free BFO-based dielectric capacitor with large energy density, superior thermal stability, and reliable bending endurance. Journal of Materiomics, 2020, 6, 200-208.	5.7	43
8	Toward Multifunctional Electronics: Flexible NBT-Based Film with a Large Electrocaloric Effect and High Energy Storage Property. ACS Applied Materials & Interfaces, 2020, 12, 6082-6089.	8.0	42
9	Energy storage performance of flexible NKBT/NKBT-ST multilayer film capacitor by interface engineering. Nano Energy, 2020, 74, 104862.	16.0	84
10	Flexible, Temperatureâ€Stable, and Fatigueâ€Endurable PbZr _{0.52} Ti _{0.48} O ₃ Ferroelectric Film for Nonvolatile Memory. Advanced Electronic Materials, 2019, 5, 1900443.	5.1	25
11	Design of an all-inorganic flexible Na _{0.5} Bi _{0.5} TiO ₃ -based film capacitor with giant and stable energy storage performance. Journal of Materials Chemistry A, 2019, 7, 22366-22376.	10.3	62
12	Flexible, Temperature-Resistant, and Fatigue-Free Ferroelectric Memory Based on Bi(Fe _{0.93} Mn _{0.05} Ti _{0.02})O ₃ Thin Film. ACS Applied Materials & Interfaces, 2019, 11, 12647-12655.	8.0	67
13	Fatigueâ€Free and Bendingâ€Endurable Flexible Mnâ€Doped Na _{0.5} Bi _{0.5} TiO ₃ â€BaTiO ₃ â€BiFeO ₃ Film Capacitor with an Ultrahigh Energy Storage Performance. Advanced Energy Materials, 2019, 9, 1803949.	19.5	165
14	Study on leakage current, ferroelectric and dielectric properties of BFMO thin films with different bismuth contents. Journal of Materials Science: Materials in Electronics, 2019, 30, 7704-7710.	2.2	7
15	Crystal structure, infrared spectra and microwave dielectric properties of novel extra low-temperature fired Eu2Zr3(MoO4)9 ceramics. Journal of the European Ceramic Society, 2019, 39, 1127-1131.	5.7	111
16	Effects of Nd3+-substitution for Bi-site on the leakage current, ferroelectric and dielectric properties of Na0.5Bi0.5TiO3 thin films. Ceramics International, 2018, 44, 6330-6336.	4.8	39
17	Thickness-dependent ferroelectric and dielectric behaviors for Ni-doped Na0.05Bi0.05TiO3 film derived by chemical solution deposition. Journal of Materials Science: Materials in Electronics, 2018, 29, 11039-11044.	2.2	5
18	Comparative study on energy storage performance of Na.5Bi.5(Ti,W,Ni)O3 thin films with different bismuth contents. Ceramics International, 2018, 44, 9643-9648.	4.8	13

#	Article	IF	CITATIONS
19	The microstructure, energy storage and dielectric behaviours of (Ti,Zn)-doped Bi _{0.97} Nd _{0.03} FeO ₃ thin films. Materials Technology, 2018, 33, 10-15.	3.0	5
20	Tailoring structural and electrical properties of A-site nonstoichiometric Na0.5Bi0.5(Ti0.97Ni0.03)O3 ferroelectric films deposited on LaNiO3(100)/Si substrate. Ceramics International, 2018, 44, 22406-22411.	4.8	3
21	Effect of donor W and acceptor Ni codoping at Ti site on the structure and electrical properties of Na0.5Bi0.5TiO3 thin film. Ceramics International, 2018, 44, 15236-15242.	4.8	2
22	Design of magnetic-fluorescent based nanosensor for highly sensitive determination and removal of HG2+. Ceramics International, 2018, 44, 9746-9752.	4.8	11
23	Enhanced energy storage property and dielectric tunability of Na0.5Bi0.5(Ti,W,Ni)O3 thin film on Bi(Fe,Mn)O3 buffered LaNiO3(100)/Si substrate. Journal of Materials Science: Materials in Electronics, 2018, 29, 14479-14486.	2.2	0
24	Superior dielectric tunability of high-valence W6+-doped Na0.5Bi0.5TiO3 thin films. Journal of Materials Science: Materials in Electronics, 2017, 28, 1433-1437.	2.2	2
25	Enhanced dielectric tunability of W-doped Na0.5Bi0.5TiO3 thin film by moderating the precursor solution concentration. Journal of Materials Science: Materials in Electronics, 2017, 28, 3042-3047.	2.2	1
26	Comparative study on dielectric behavior in fresh and aged Na0.5Bi0.5(Ti,Fe,W)O3 thin films. Ceramics International, 2017, 43, 7690-7694.	4.8	5
27	Effects of thickness on the structural, ferroelectric and dielectric properties of (Nb,Fe)-codoped Na0.5Bi0.5TiO3 thin film. Journal of Materials Science: Materials in Electronics, 2017, 28, 17833-17838.	2.2	0
28	Large dielectric tunability of (Ce,Fe)-codoped (Ba,Sr)TiO3 thin film annealed at low temperature. Journal of Materials Science: Materials in Electronics, 2017, 28, 11332-11337.	2.2	1
29	The microstructure, leakage current and dielectric behaviors of (Nd,Ti)-codoped BiFeO3 thin films: effect of deposited substrate. Journal of Materials Science: Materials in Electronics, 2017, 28, 3423-3427.	2.2	0
30	The microstructure, insulating and dielectric characteristics of Na0.5Bi0.5TiO3 thin films: role of precursor solution. Journal of Materials Science: Materials in Electronics, 2017, 28, 18057-18063.	2.2	3
31	Microstructure, leakage current and dielectric tunability properties of W ⁶⁺ :Na _{0.5} Bi _{0.5} TiO ₃ /Fe ³⁺ :Na _{0.5} bilayered thin film. Materials Technology, 2016, 31, 860-864.	Bi sso ub>O.	5 a/sub>TiO<
32	Substrate-dependent ferroelectric and dielectric properties of Mn doped Na0.5Bi0.5TiO3 thin films derived by chemical solution decomposition. Journal of Alloys and Compounds, 2016, 679, 133-137.	5.5	11
33	Effects of annealing temperature on the microstructure, ferroelectric and dielectric properties of W-doped Na0.5Bi0.5TiO3 thin films. Ceramics International, 2016, 42, 12210-12214.	4.8	5
34	Low temperature sintering and microwave dielectric properties of CoZrNb2O8 ceramics with H3BO3 addition. Journal of Materials Science: Materials in Electronics, 2016, 27, 6564-6569.	2.2	7
35	Effect of H3BO3 on sintering behavior and microwave dielectric properties of monoclinal structure ZnZrNb2O8 ceramics. Journal of Materials Science: Materials in Electronics, 2016, 27, 8055-8061.	2.2	5
36	High ferroelectric performance of Bi0.9La0.1FeO3 thick film by optimizing preparation precursor solution. Journal of Sol-Gel Science and Technology, 2016, 80, 174-179.	2.4	5

#	Article	IF	CITATIONS
37	Influence of precursor solution concentration on the microstructure, leakage current and dielectric tunability of Zn-doped Na0.5Bi0.5TiO3 thin films prepared by metal organic decomposition. Ceramics International, 2016, 42, 12033-12037.	4.8	6
38	Effect of defect dipole-induced aging on the dielectric property of Fe3+-doped Na0.5Bi0.5TiO3 thin film. Ceramics International, 2016, 42, 2876-2881.	4.8	10
39	Effects of Zn2+ doping content on the structure and dielectric tunability of non-stoichiometric [(Na0.7K0.2Li0.1)0.45Bi0.55]TiO3+l´thin film. Journal of Materials Science: Materials in Electronics, 2016, 27, 2195-2200.	2.2	10
40	Microstructure, ferroelectric and dielectric properties in Nd and Ti co-doped BiFeO3 thin film. Journal of Sol-Gel Science and Technology, 2016, 78, 559-565.	2.4	7
41	Microstructure, leakage current and dielectric tunability of Na0.5Bi0.5(Ti0.99Zn0.01)O3 thin films: An annealing atmosphere-dependent study. Ceramics International, 2016, 42, 8744-8749.	4.8	2
42	Effects of single-coated layer thickness on the microstructure, leakage current and dielectric tunability of Na0.5Bi0.5(Ti,Zn)O3-δ thin films prepared by metal organic decomposition. Journal of Alloys and Compounds, 2016, 663, 659-663.	5.5	7
43	Structural, ferroelectric and dielectric properties of Na0.5Bi0.5(Ti0.98Fe0.02)O3 thin films on different substrates. Journal of Materials Science: Materials in Electronics, 2016, 27, 776-780.	2.2	5
44	The structure, ferroelectric and dielectric properties of Na0.5Bi0.5(Ti0.98Mn0.02)O3thin film prepared by chemical solution decomposition. Materials Technology, 2015, 30, A172-A175.	3.0	2
45	Enhanced ferroelectric and dielectric properties of Nb 5+ -doped Na 0.5 Bi 0.5 TiO 3 thin film deposited under nitrogen annealing atmosphere. Ceramics International, 2015, 41, 10272-10275.	4.8	12
46	Na0.5Bi0.5(Ti0.98Zr0.02)O3 thin film with improved performance by modifying annealing atmosphere and Zr doping content. Journal of Alloys and Compounds, 2015, 637, 315-320.	5.5	26
47	Enhanced electrical properties in Bi(Fe _{0·95} Mn _{0·05})O ₃ modified Na _{0·5} Bi _{0·5} TiO ₃ thin film. Materials Technology, 2015, 30, 151-154.	3.0	5
48	Structural, ferroelectric, and dielectric properties of bilayered Na0.5Bi0.5(Ti0.98Zr0.02)O3/Na0.5Bi0.5(Ti0.98Fe0.02)O3 thin films prepared by metal organic decomposition. Ceramics International, 2015, 41, 859-863.	4.8	3
49	EFFECTS OF PRECURSOR SOLUTION MODIFICATION ON THE CRYSTALLINITY AND ELECTRICAL PROPERTIES OF Na0.5Bi0.5TiO3-BiFeO3 BASED THIN FILM. Surface Review and Letters, 2014, 21, 1450064.	1.1	2
50	Dielectric tunability of highly (l00)-oriented Fe-doped Na0.5Bi0.5TiO3 thin film. Ceramics International, 2014, 40, 12989-12992.	4.8	6
51	Non-lead Ce: Na0.5Bi0.5TiO3–BiFeO3 solid solution thin film with significantly reduced leakage current and large polarization. Ceramics International, 2014, 40, 4753-4757.	4.8	8
52	Effects of annealing temperature on the microstructure, electrical properties of Fe-doped Na0.5Bi0.5TiO3 thin films. Journal of Alloys and Compounds, 2014, 586, 683-687.	5.5	15
53	Preparation of perovskite Fe-doped Na0.5Bi0.5TiO3 thin film from polyethylene glycol-modified solution precursor on LaNiO3/Si substrate. Materials Letters, 2013, 102-103, 109-111.	2.6	11
54	Preparation and electrical properties of Sm-doped Bi2Ti2O7 thin films prepared on Pt (111) substrates. Ceramics International, 2013, 39, 1125-1128.	4.8	14

#	Article	IF	CITATIONS
55	Reduced leakage current, enhanced ferroelectric and dielectric properties in (Ce,Fe)-codoped Na0.5Bi0.5TiO3 film. Applied Physics Letters, 2012, 100, .	3.3	57
56	Statistical mechanical origin of hysteresis in ferroelectrics. Journal of Applied Physics, 2012, 112, 034113.	2.5	4
57	Ferroelectric, ferromagnetic, and dielectric behaviors of (Na0.5Bi0.5)0.98Ce0.02(Ti0.99Fe0.01)O3–BiFe0.95Mn0.05O3 solid-solution thin film. Materials Letters, 2012, 88, 54-56.	2.6	9
58	Dielectric and ferroelectric properties of A-site non-stoichiometric Na0.5Bi0.5TiO3-based thin films. Materials Letters, 2012, 66, 86-88.	2.6	29
59	Comparative study on aging effect in BiFeO3 thin films substituted at A- and B-sites. Applied Physics Letters, 2011, 99, .	3.3	33
60	PREPARATION AND FERROELECTRIC PROPERTIES OF LEAD-FREE A_{0.5}Bi_{0.5}TiO₃ (A = Na OR) Tj ETQq0 0 0 rg	BT ¦Q verlo	ck &0 Tf 50 5
61	Large Piezoelectric Coefficient in Tbâ€Đoped BiFeO ₃ Films. Journal of the American Ceramic Society, 2010, 93, 948-950.	3.8	46
62	Enhanced Piezoelectric Properties of Epitaxial W-Doped BiFeO3Thin Films. Applied Physics Express, 2010, 3, 101501.	2.4	26
63	Thickness effects of Bi3.5Nd0.5Ti3O12 buffer layers on structure and electrical properties of BiFeO3 films. Journal of Materials Science, 2009, 44, 3556-3560.	3.7	3
64	Preparation and ferroelectric properties of predominantly (100)-oriented SrBi4Ti4O15 ferroelectric thin film on Pt(111)/TiO2/SiO2/Si(100) substrate. Journal of Materials Science: Materials in Electronics, 2009, 20, 113-116.	2.2	2
65	Agingâ€Induced Double Ferroelectric Hysteresis Loops and Asymmetric Coercivity in Asâ€Deposited BiFe _{0.95} Zn _{0.05} O ₃ Thin Film. Journal of the American Ceramic Society, 2009, 92, 1610-1612.	3.8	28
66	Lowâ€Temperature Fabrication and Enhanced Ferro―and Piezoelectric Properties of Bi _{3.7} Nd _{0.3} Ti ₃ O ₁₂ Films on Indium TinOxide/Glass Substrates. Journal of the American Ceramic Society, 2009, 92, 1556-1559.	3.8	15
67	Effects of annealing process and Mn substitution on structure and ferroelectric properties of BiFeO3 films. Thin Solid Films, 2009, 517, 4497-4501.	1.8	61
68	Low leakage current and enhanced ferroelectric properties of Ti and Zn codoped BiFeO3 thin film. Applied Physics Letters, 2008, 92, .	3.3	221
69	Effects of Bi2Ti2O7 buffer layer on memory properties of BiFe0.95Mn0.05O3 thin film. Applied Physics Letters, 2008, 93, 172906.	3.3	12
70	Enhanced ferroelectric properties of predominantly (100)-oriented CaBi4Ti4O15 thin films on Ptâ^•Tiâ^•SiO2â^•Si substrates. Journal of Applied Physics, 2008, 103, 056109.	2.5	21
71	Ferroelectric properties, morphologies, and leakage currents of Bi0.97La0.03FeO3 thin films deposited on indium tin oxide/glass substrates. Journal of Applied Physics, 2008, 104, .	2.5	33
72	PREPARATION AND CHARACTERISTICS OF Sm-DOPED Bi2Ti2O7 THIN FILMS. Surface Review and Letters, 2007, 14, 147-150.	1.1	3

#	Article	IF	CITATIONS
73	Effects of Gd substitution on structure and ferroelectric properties of BiFeO3 thin films prepared using metal organic decomposition. Applied Physics Letters, 2007, 91, .	3.3	165