Pamela Guevara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2388842/publications.pdf

Version: 2024-02-01

393982 329751 1,636 63 19 37 citations h-index g-index papers 67 67 67 2318 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Altered structural connectivity of cortico-striato-pallido-thalamic networks in Gilles de la Tourette syndrome. Brain, 2015, 138, 472-482.	3.7	184
2	Automatic fiber bundle segmentation in massive tractography datasets using a multi-subject bundle atlas. NeuroImage, 2012, 61, 1083-1099.	2.1	165
3	A Multicenter Tractography Study of Deep White Matter Tracts in Bipolar I Disorder. JAMA Psychiatry, 2014, 71, 388.	6.0	132
4	Robust clustering of massive tractography datasets. Neurolmage, 2011, 54, 1975-1993.	2.1	126
5	The CONNECT project: Combining macro- and micro-structure. Neurolmage, 2013, 80, 273-282.	2.1	121
6	Reproducibility of superficial white matter tracts using diffusion-weighted imaging tractography. Neurolmage, 2017, 147, 703-725.	2.1	111
7	Tractography dissection variability: What happens when 42 groups dissect 14 white matter bundles on the same dataset?. Neurolmage, 2021, 243, 118502.	2.1	94
8	Local structural connectivity is associated with social cognition in autism spectrum disorder. Brain, 2018, 141, 3472-3481.	3.7	62
9	Childhood trauma and the limbic network: a multimodal MRI study in patients with bipolar disorder and controls. Journal of Affective Disorders, 2016, 200, 159-164.	2.0	55
10	Clustering of Whole-Brain White Matter Short Association Bundles Using HARDI Data. Frontiers in Neuroinformatics, 2017, $11,73$.	1.3	54
11	Superficial white matter: A review on the dMRI analysis methods and applications. NeuroImage, 2020, 212, 116673.	2.1	52
12	Organising white matter in a brain without corpus callosum fibres. Cortex, 2015, 63, 155-171.	1.1	46
13	Increased and Decreased Superficial White Matter Structural Connectivity in Schizophrenia and Bipolar Disorder. Schizophrenia Bulletin, 2019, 45, 1367-1378.	2.3	45
14	An Example-Based Multi-Atlas Approach to Automatic Labeling of White Matter Tracts. PLoS ONE, 2015, 10, e0133337.	1.1	36
15	Fast Automatic Segmentation of White Matter Streamlines Based on a Multi-Subject Bundle Atlas. Neuroinformatics, 2017, 15, 71-86.	1.5	36
16	Similar white matter but opposite grey matter changes in schizophrenia and highâ€functioning autism. Acta Psychiatrica Scandinavica, 2016, 134, 31-39.	2.2	32
17	FFClust: Fast fiber clustering for large tractography datasets for a detailed study of brain connectivity. Neurolmage, 2020, 220, 117070.	2.1	25
18	Spatial normalization of brain images and beyond. Medical Image Analysis, 2016, 33, 127-133.	7.0	24

#	Article	IF	Citations
19	Mapping Cortico-Striatal Connectivity onto the Cortical Surface: A New Tractography-Based Approach to Study Huntington Disease. PLoS ONE, 2013, 8, e53135.	1.1	23
20	Disruption of Conscious Access in Psychosis Is Associated with Altered Structural Brain Connectivity. Journal of Neuroscience, 2021, 41, 513-523.	1.7	22
21	Tractography-Based Parcellation of the Cortex Using a Spatially-Informed Dimension Reduction of the Connectivity Matrix. Lecture Notes in Computer Science, 2009, 12, 935-942.	1.0	21
22	Inter-subject Connectivity-Based Parcellation of a Patch of Cerebral Cortex. Lecture Notes in Computer Science, 2010, 13, 347-354.	1.0	20
23	Shape analysis of the cingulum, uncinate and arcuate fasciculi in patients with bipolar disorder. Journal of Psychiatry and Neuroscience, 2017, 42, 27-36.	1.4	16
24	Joint T1 and Brain Fiber Log-Demons Registration Using Currents to Model Geometry. Lecture Notes in Computer Science, 2012, 15, 57-65.	1.0	13
25	Parallel Optimization of Fiber Bundle Segmentation for Massive Tractography Datasets. , 2019, , .		12
26	From Coarse to Fine-Grained Parcellation of the Cortical Surface Using a Fiber-Bundle Atlas. Frontiers in Neuroinformatics, 2020, 14, 32.	1.3	9
27	Cortical Surface Parcellation Based on Graph Representation of Short Fiber Bundle Connections. , 2019, , .		8
28	GeoSP: A parallel method for a cortical surface parcellation based on geodesic distance. , 2020, 2020, 1696-1700.		7
29	Fiber Clustering Acceleration With a Modified Kmeans++ Algorithm Using Data Parallelism. Frontiers in Neuroinformatics, 2021, 15, 727859.	1.3	7
30	Analysis of the Striato-Thalamo-Cortical Connectivity on the Cortical Surface to Infer Biomarkers of Huntington's Disease. Lecture Notes in Computer Science, 2010, 13, 217-224.	1.0	6
31	Machine learning to investigate superficial white matter integrity in early multiple sclerosis. Journal of Neuroimaging, 2022, 32, 36-47.	1.0	6
32	Inference of a HARDI Fiber Bundle Atlas Using a Two-Level Clustering Strategy. Lecture Notes in Computer Science, 2010, 13, 550-557.	1.0	6
33	Disentangling the variability of the superficial white matter organization using regional-tractogram-based population stratification. Neurolmage, 2022, 255, 119197.	2.1	6
34	Study of the variability of short association bundles on a HARDI database., 2013, 2013, 77-80.		5
35	Connectivity-based parcellation of the cortical surface using q-ball imaging. , 2008, , .		4
36	Automatic group-wise whole-brain short association fiber bundle labeling based on clustering and cortical surface information. BioMedical Engineering OnLine, 2020, 19, 42.	1.3	4

#	Article	IF	Citations
37	Interactive segmentation of white-matter fibers using a multi-subject atlas., 2014, 2014, 2376-9.		3
38	Creation of a whole brain short association bundle atlas using a hybrid approach., 2016, 2016, 1115-1119.		3
39	T145. ALTERATIONS IN SUPERFICIAL WHITE MATTER IN THE FRONTAL CORTEX IN SCHIZOPHRENIA: A DWI STUDY USING A NOVEL ATLAS. Schizophrenia Bulletin, 2018, 44, S172-S172.	2.3	3
40	Inter-Subject Clustering of Brain Fibers from Whole-Brain Tractography. , 2020, 2020, 1687-1691.		3
41	Joint T1 and Brain Fiber Diffeomorphic Registration Using the Demons. Lecture Notes in Computer Science, 2011, , 10-18.	1.0	3
42	Segmentation of Short Association Bundles in Massive Tractography Datasets Using a Multi-subject Bundle Atlas. Lecture Notes in Computer Science, 2011, , 701-708.	1.0	2
43	GPU-Based acceleration of an automatic white matter segmentation algorithm using CUDA., 2013, 2013, 89-92.		2
44	iFiber: A brain tract visualizer for Android devices. , 2015, , .		2
45	Automatic segmentation of short association bundles using a new multi-subject atlas of the left hemisphere fronto-parietal brain connections. , 2015, 2015, 426-9.		2
46	242. Superficial White Matter Integrity in Autism Spectrum Disorders. Biological Psychiatry, 2017, 81, S99-S100.	0.7	2
47	Automatic clustering of short association white matter fibers from HARDI tractography datasets. , 2015, , .		1
48	Short association bundle atlas based on inter-subject clustering from HARDI data. , 2016, 2016, 5545-5549.		1
49	T240. Relationship Between Cognitive Performance and Superficial White Matter Integrity in the Cingulate Cortex in Schizophrenia: A DWI Study Using a Novel Atlas. Biological Psychiatry, 2018, 83, S222.	0.7	1
50	Cortical surface parcellation based on intra-subject white matter fiber clustering. , 2019, , .		1
51	ABrainVis: an android brain image visualization tool. BioMedical Engineering OnLine, 2021, 20, 72.	1.3	1
52	Group-Wise Cortical Surface Parcellation Based on Inter-Subject Fiber Clustering., 2021, 2021, 2655-2659.		1
53	Using tractography to infer Basal ganglia's functional subterritories distribution change in Huntington disease. , $2014, \dots$		0
54	A semi-automatic tool for the connectivity tracking of neuronal processes acquired using electron microscopy. , $2015, \ldots$		0

#	Article	IF	Citations
55	A stringent fiber distance measure for dMRI tractography clustering and segmentation*., 2018, 2018, 1-4.		0
56	Interactive System for Language and Communication Stimulation Directed to Young Children. , 2019, , .		0
57	The effect of the number of fibers in tractography reconstruction of white matter bundles. , 2019, 2019, 2825-2829.		0
58	TRANSMEDIA PSYCHOEDUCATIONAL PROGRAM TO IMPROVE PHARMACOLOGICAL ADHERENCE TO ANTIHYPERTENSIVE TREATMENT AMONG ELDERLY PEOPLE. Journal of Hypertension, 2019, 37, e224-e225.	0.3	0
59	S160. ALTERATIONS IN SHORT-RANGE STRUCTURAL CONNECTIVITY ACROSS THE PSYCHOSIS SPECTRUM: FINDINGS FROM THE B-SNIP STUDY. Schizophrenia Bulletin, 2020, 46, S97-S97.	2.3	0
60	Short White Matter Tracts Myelinization is Associated With Impaired Social Cognition in Autism Spectrum Disorder: A NODDI and Relaxometry Study. Biological Psychiatry, 2020, 87, S339.	0.7	0
61	Clustering of short association white matter fibers calculated from diffusion MRI. , 2014, , .		0
62	Automatic segmentation of the short association fibers of the fronto-parietal and insula brain regions. , 2014, , .		0
63	Identification of U-Bundles Based on Sulcus Morphology. Lecture Notes in Computer Science, 2019, , 3-7.	1.0	O