List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/238876/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Genetically Targeted Connectivity Tracing Excludes Dopaminergic Inputs to the Interpeduncular<br>Nucleus from the Ventral Tegmentum and Substantia Nigra. ENeuro, 2021, 8, ENEURO.0127-21.2021. | 0.9 | 5         |
| 2  | Dual recombinase fate mapping reveals a transient cholinergic phenotype in multiple populations of developing glutamatergic neurons. Journal of Comparative Neurology, 2020, 528, 283-307.      | 0.9 | 26        |
| 3  | Mapping Cell Types and Efferent Pathways in the Ascending Relaxin-3 System of the Nucleus Incertus.<br>ENeuro, 2020, 7, ENEURO.0272-20.2020.                                                    | 0.9 | 8         |
| 4  | GAD2 Expression Defines a Class of Excitatory Lateral Habenula Neurons in Mice that Project to the Raphe and Pontine Tegmentum. ENeuro, 2020, 7, ENEURO.0527-19.2020.                           | 0.9 | 27        |
| 5  | Chrna5-Expressing Neurons in the Interpeduncular Nucleus Mediate Aversion Primed by Prior<br>Stimulation or Nicotine Exposure. Journal of Neuroscience, 2018, 38, 6900-6920.                    | 1.7 | 35        |
| 6  | Specific connections of the interpeduncular subnuclei reveal distinct components of the habenulopeduncular pathway. Journal of Comparative Neurology, 2017, 525, 2632-2656.                     | 0.9 | 52        |
| 7  | The Dorsal Medial Habenula Minimally Impacts Circadian Regulation of Locomotor Activity and Sleep.<br>Journal of Biological Rhythms, 2017, 32, 444-455.                                         | 1.4 | 8         |
| 8  | A distal 594bp ECR specifies <i>Hmx1</i> expression in pinna and lateral facial morphogenesis and is regulated by Hox-Pbx-Meis. Development (Cambridge), 2016, 143, 2582-92.                    | 1.2 | 13        |
| 9  | Dorsal Medial Habenula Regulation of Mood-Related Behaviors and Primary Reinforcement by<br>Tachykinin-Expressing Habenula Neurons. ENeuro, 2016, 3, ENEURO.0109-16.2016.                       | 0.9 | 45        |
| 10 | Telepsychiatry integration of mental health services into rural primary care settings. International<br>Review of Psychiatry, 2015, 27, 525-539.                                                | 1.4 | 154       |
| 11 | Efferent Pathways of the Mouse Lateral Habenula. Journal of Comparative Neurology, 2015, 523, 32-60.                                                                                            | 0.9 | 124       |
| 12 | Extrinsic and intrinsic signals converge on the Runx1/CBFÎ <sup>2</sup> transcription factor for nonpeptidergic nociceptor maturation. ELife, 2015, 4, e10874.                                  | 2.8 | 20        |
| 13 | Genetic evidence for conserved non-coding element function across species–the ears have it.<br>Frontiers in Physiology, 2014, 5, 7.                                                             | 1.3 | 12        |
| 14 | Bidirectional modulation of deep cerebellar nuclear cells revealed by optogenetic manipulation of inhibitory inputs from Purkinje cells. Neuroscience, 2014, 277, 250-266.                      | 1.1 | 13        |
| 15 | Role of the Dorsal Medial Habenula in the Regulation of Voluntary Activity, Motor Function, Hedonic<br>State, and Primary Reinforcement. Journal of Neuroscience, 2014, 34, 11366-11384.        | 1.7 | 95        |
| 16 | The genetics of auricular development and malformation: New findings in model systems driving future directions for microtia research. European Journal of Medical Genetics, 2014, 57, 394-401. | 0.7 | 100       |
| 17 | Evaluating cerebellar functions using optogenetic transgenic mice. Proceedings of SPIE, 2013, , .                                                                                               | 0.8 | 0         |
|    |                                                                                                                                                                                                 |     |           |

A combinatorial optogenetic approach to medial habenula function. , 2013, , .

0

| #  | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Medial Habenula Output Circuit Mediated by α5 Nicotinic Receptor-Expressing GABAergic Neurons in the<br>Interpeduncular Nucleus. Journal of Neuroscience, 2013, 33, 18022-18035.                                       | 1.7 | 74        |
| 20 | Positional differences of axon growth rates between sensory neurons encoded by runx3. EMBO<br>Journal, 2012, 31, 3718-3729.                                                                                            | 3.5 | 37        |
| 21 | Deletion of a conserved regulatory element required for Hmx1 expression in craniofacial mesenchyme in the dumbo rat: a novel cause of congenital ear malformation. DMM Disease Models and Mechanisms, 2012, 5, 812-22. | 1.2 | 24        |
| 22 | A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing.<br>Nature Neuroscience, 2012, 15, 793-802.                                                                          | 7.1 | 1,153     |
| 23 | Hmx1 is required for the normal development of somatosensory neurons in the geniculate ganglion.<br>Developmental Biology, 2012, 365, 152-163.                                                                         | 0.9 | 23        |
| 24 | Nerve endings reveal hidden diversity in the skin. ELife, 2012, 1, e00352.                                                                                                                                             | 2.8 | 0         |
| 25 | Brn3a and Islet1 Act Epistatically to Regulate the Gene Expression Program of Sensory Differentiation.<br>Journal of Neuroscience, 2011, 31, 9789-9799.                                                                | 1.7 | 90        |
| 26 | Allele specific analysis of the ADRBK2 gene in lymphoblastoid cells from bipolar disorder patients.<br>Journal of Psychiatric Research, 2010, 44, 201-208.                                                             | 1.5 | 7         |
| 27 | Brn3a regulates neuronal subtype specification in the trigeminal ganglion by promoting Runx expression during sensory differentiation. Neural Development, 2010, 5, 3.                                                 | 1.1 | 54        |
| 28 | Expression of Dopamine Pathway Genes in the Midbrain Is Independent of Known ETS Transcription<br>Factor Activity. Journal of Neuroscience, 2010, 30, 9224-9227.                                                       | 1.7 | 12        |
| 29 | Brn3a and Nurr1 Mediate a Gene Regulatory Pathway for Habenula Development. Journal of Neuroscience, 2009, 29, 14309-14322.                                                                                            | 1.7 | 101       |
| 30 | Brn3a regulates the transition from neurogenesis to terminal differentiation and represses<br>nonâ€neural gene expression in the trigeminal ganglion. Developmental Dynamics, 2009, 238, 3065-3079.                    | 0.8 | 37        |
| 31 | A central role for Islet1 in sensory neuron development linking sensory and spinal gene regulatory programs. Nature Neuroscience, 2008, 11, 1283-1293.                                                                 | 7.1 | 172       |
| 32 | Regulation of the development of tectal neurons and their projections by transcription factors Brn3a and Pax7. Developmental Biology, 2008, 316, 6-20.                                                                 | 0.9 | 25        |
| 33 | Tlx1 and Tlx3 Coordinate Specification of Dorsal Horn Pain-Modulatory Peptidergic Neurons. Journal of Neuroscience, 2008, 28, 4037-4046.                                                                               | 1.7 | 58        |
| 34 | Brn3a target gene recognition in embryonic sensory neurons. Developmental Biology, 2007, 302,<br>703-716.                                                                                                              | 0.9 | 32        |
| 35 | POU-domain factor Brn3a regulates both distinct and common programs of gene expression in the spinal and trigeminal sensory ganglia. Neural Development, 2007, 2, 3.                                                   | 1.1 | 47        |
| 36 | Regulation of FGF10 by POU transcription factor Brn3a in the developing trigeminal ganglion. Journal of Neurobiology, 2006, 66, 1075-1083.                                                                             | 3.7 | 3         |

| #  | Article                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Brn3a-Expressing Retinal Ganglion Cells Project Specifically to Thalamocortical and Collicular Visual<br>Pathways. Journal of Neuroscience, 2005, 25, 11595-11604.                          | 1.7 | 161       |
| 38 | Coordinated regulation of gene expression by Brn3a in developing sensory ganglia. Development (Cambridge), 2004, 131, 3859-3870.                                                            | 1.2 | 70        |
| 39 | Risperidone-induced retrograde ejaculation: case report and review of the literature. International<br>Clinical Psychopharmacology, 2004, 19, 111-112.                                      | 0.9 | 29        |
| 40 | Sonic hedgehog regulates the position of the trigeminal ganglia. Developmental Biology, 2003, 261, 456-469.                                                                                 | 0.9 | 43        |
| 41 | Direct autoregulation and gene dosage compensation by POU-domain transcription factor Brn3a.<br>Development (Cambridge), 2003, 130, 111-121.                                                | 1.2 | 60        |
| 42 | Brn3a regulation of TrkA/NGF receptor expression in developing sensory neurons. Development<br>(Cambridge), 2003, 130, 3525-3534.                                                           | 1.2 | 59        |
| 43 | Unaltered expression of Bcl-2 and TAG-1/axonin-1 precedes sensory apoptosis in Brn3a knockout mice.<br>NeuroReport, 2003, 14, 173-176.                                                      | 0.6 | 5         |
| 44 | Optimal Oct-2 Affinity for an Extended DNA Site and the Effect of GST Fusion on Site Preference.<br>Archives of Biochemistry and Biophysics, 2001, 385, 397-405.                            | 1.4 | 9         |
| 45 | Signals from the ventral midline and isthmus regulate the development of Brn3.0-expressing neurons in the midbrain. Mechanisms of Development, 2001, 105, 129-144.                          | 1.7 | 40        |
| 46 | Defects in Sensory Axon Growth Precede Neuronal Death in Brn3a-Deficient Mice. Journal of Neuroscience, 2001, 21, 541-549.                                                                  | 1.7 | 95        |
| 47 | Autoregulatory Sequences are Revealed by Complex Stability Screening of the Mousebrn-3.0Locus.<br>Journal of Neuroscience, 1999, 19, 6549-6558.                                             | 1.7 | 38        |
| 48 | Placodal origin of Brn-3?expressing cranial sensory neurons. , 1998, 36, 572-585.                                                                                                           |     | 39        |
| 49 | Highly Cooperative Homodimerization Is a Conserved Property of Neural POU Proteins. Journal of Biological Chemistry, 1998, 273, 34196-34205.                                                | 1.6 | 50        |
| 50 | The POU-domain factor Brn-3.0 recognizes characteristic sites in the herpes simplex virus genome.<br>Nucleic Acids Research, 1997, 25, 2589-2594.                                           | 6.5 | 8         |
| 51 | Cellular and molecular neuropathology of schizophrenia: new directions from developmental neurobiology. Schizophrenia Research, 1997, 27, 169-180.                                          | 1.1 | 11        |
| 52 | Inhibitory Effects of Ventral Signals on the Development of Brn-3.0-Expressing Neurons in the Dorsal<br>Spinal Cord. Developmental Biology, 1997, 190, 18-31.                               | 0.9 | 21        |
| 53 | POU-domain factor expression in the trigeminal ganglion and implications for herpes virus regulation. NeuroReport, 1996, 7, 2829-2832.                                                      | 0.6 | 13        |
| 54 | Similar DNA recognition properties of alternatively spliced Drosophila POU factors. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 15097-15101. | 3.3 | 13        |

| #  | Article                                                                                                                                                      | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Brn-3.0 expression identifies early post-mitotic CNS neurons and sensory neural precursors.<br>Mechanisms of Development, 1995, 53, 291-304.                 | 1.7  | 211       |
| 56 | POU Domain Transcription Factors in the Neuroendocrine System. , 1995, , 85-95.                                                                              |      | 0         |
| 57 | Brn-3.2: A Brn-3-related transcription factor with distinctive central nervous system expression and regulation by retinoic acid. Neuron, 1994, 12, 205-218. | 3.8  | 165       |
| 58 | Lack of association between an RFLP near the D2 dopamine receptor gene and severe alcoholism.<br>Biological Psychiatry, 1992, 31, 285-290.                   | 0.7  | 126       |
| 59 | Twin of I-POU: A two amino acid difference in the I-POU homeodomain distinguishes an activator from an inhibitor of transcription. Cell, 1992, 68, 491-505.  | 13.5 | 119       |