Joseph Lewis Regan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2388582/publications.pdf

Version: 2024-02-01

840119 22 936 11 citations h-index papers

g-index 25 25 25 1933 docs citations times ranked citing authors all docs

839053

18

#	Article	IF	CITATIONS
1	Molecular dissection of colorectal cancer in pre-clinical models identifies biomarkers predicting sensitivity to EGFR inhibitors. Nature Communications, 2017, 8, 14262.	5.8	260
2	Transcriptome analysis of mammary epithelial subpopulations identifies novel determinants of lineage commitment and cell fate. BMC Genomics, 2008, 9, 591.	1.2	151
3	Non-Canonical Hedgehog Signaling Is a Positive Regulator of the WNT Pathway and Is Required for the Survival of Colon Cancer Stem Cells. Cell Reports, 2017, 21, 2813-2828.	2.9	105
4	c-Kit is required for growth and survival of the cells of origin of Brca1-mutation-associated breast cancer. Oncogene, 2012, 31, 869-883.	2.6	92
5	Isolation of Mouse Mammary Epithelial Subpopulations: A Comparison of Leading Methods. Journal of Mammary Gland Biology and Neoplasia, 2012, 17, 91-97.	1.0	65
6	Aurora A Kinase Regulates Mammary Epithelial Cell Fate by Determining Mitotic Spindle Orientation in a Notch-Dependent Manner. Cell Reports, 2013, 4, 110-123.	2.9	59
7	Common Molecular Mechanisms of Mammary Gland Development and Breast Cancer. Cellular and Molecular Life Sciences, 2007, 64, 3248-3260.	2.4	50
8	Pregnancy in the mature adult mouse does not alter the proportion of mammary epithelial stem/progenitor cells. Breast Cancer Research, 2009, 11, R20.	2.2	44
9	PDE5 inhibition eliminates cancer stem cells via induction of PKA signaling. Cell Death and Disease, 2018, 9, 192.	2.7	33
10	Regulator of G-protein signalling 2 mRNA is differentially expressed in mammary epithelial subpopulations and over-expressed in the majority of breast cancers. Breast Cancer Research, 2007, 9, R85.	2.2	24
11	Prospective Isolation and Functional Analysis of Stem and Differentiated Cells from the Mouse Mammary Gland. Stem Cell Reviews and Reports, 2007, 3, 124-136.	5 . 6	21
12	Identification of a neural development gene expression signature in colon cancer stem cells reveals a role for EGR2 in tumorigenesis. IScience, 2022, 25, 104498.	1.9	9
13	Integrating single-cell RNA-sequencing and functional assays to decipher mammary cell states and lineage hierarchies. Npj Breast Cancer, 2020, 6, 32.	2.3	8
14	RNA sequencing of long-term label-retaining colon cancer stem cells identifies novel regulators of quiescence. IScience, 2021, 24, 102618.	1.9	6
15	Cell fate in colon cancer stem cells: To GLI or not to GLI?*. Molecular and Cellular Oncology, 2018, 5, e1445940.	0.3	3
16	Generation of Patient-Derived Colorectal Cancer Organoids for RAS Studies. Methods in Molecular Biology, 2021, 2262, 349-360.	0.4	2
17	Protocol for isolation and functional validation of label-retaining quiescent colorectal cancer stem cells from patient-derived organoids for RNA-seq. STAR Protocols, 2022, 3, 101225.	0.5	2
18	Immunofluorescence staining of colorectal cancer patient-derived organoids. Methods in Cell Biology, 2022, , 163-171.	0.5	2

#	Article	IF	CITATIONS
19	Abstract 3875: Functional and molecular characterization of colon cancer stem cells in tumor heterogeneity and disease relapse using a 3D-model of patient-derived tumors. , 2014, , .		O
20	Abstract 977: 3D-models of patient-derived colon tumors for the identification of genetic factors important in the regulation of cancer stem cells. , $2015, \dots$		0
21	Abstract 1715: Whole transcriptome analysis of patient-derived 3D in vitro and xenograft models of colon cancer identifies placental genes required for the survival of cancer stem cells., 2016,,.		О
22	Abstract 1714: The role of Hedgehog signaling in the regulation of human colon cancer stem cells. , 2016, , .		0