List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/238806/publications.pdf Version: 2024-02-01

Χιλο-Ιτινι Ιιλ

#	Article	IF	CITATIONS
1	Analysis of etalon filter in quantum memory. Microwave and Optical Technology Letters, 2023, 65, 1463-1467.	1.4	0
2	Mutually testing source-device-independent quantum random number generator. Photonics Research, 2022, 10, 646.	7.0	7
3	Deterministic distribution of multipartite entanglement in a quantum network by continuous-variable polarization states. Optics Express, 2022, 30, 6388.	3.4	3
4	Electromagnetically induced transparency quantum memory for non-classical states of light. Advances in Physics: X, 2022, 7, .	4.1	3
5	High-performance cavity-enhanced quantum memory with warm atomic cell. Nature Communications, 2022, 13, 2368.	12.8	19
6	Generation of non-classical states of light and their application in deterministic quantum teleportation. Fundamental Research, 2021, 1, 43-49.	3.3	43
7	Establishing of quantum entanglement among three atomic nodes via spontanenous Raman scattering. Wuli Xuebao/Acta Physica Sinica, 2021, .	0.5	0
8	Application of non-Hermitian Hamiltonian model in open quantum optical systems*. Chinese Physics B, 2021, 30, 050301.	1.4	4
9	Large-tuning-range frequency stabilization of an ultraviolet laser by an open-loop piezoelectric ceramic controlled Fabry–Pérot cavity. Optics Express, 2021, 29, 24674.	3.4	6
10	Quantum Entanglement Among Multiple Memories for Continuous Variables. Advanced Quantum Technologies, 2021, 4, 2100071.	3.9	6
11	Quantum network based on non-classical light. Science China Information Sciences, 2020, 63, 1.	4.3	27
12	Quantum Enhanced Optical Phase Estimation With a Squeezed Thermal State. Physical Review Applied, 2020, 13, .	3.8	24
13	Quantum Interferometer Combining Squeezing and Parametric Amplification. Physical Review Letters, 2020, 124, 173602.	7.8	35
14	Quantum phase estimation with a stable squeezed state. European Physical Journal D, 2020, 74, 1.	1.3	1
15	Preparation of bipartite bound entangled Gaussian states in quantum optics. Physical Review A, 2019, 100, .	2.5	6
16	Transferring of Continuous Variable Squeezed States in 20 km Fiber. Applied Sciences (Switzerland), 2019, 9, 2397.	2.5	3
17	High-efficiency generation of a low-noise laser at 447 nm. Applied Physics Express, 2019, 12, 032010.	2.4	5
18	Improvement of the intensity noise and frequency stabilization of Nd:YAP laser with an ultra-low expansion Fabry-Perot cavity. Optics Express, 2019, 27, 3247.	3.4	11

#	Article	IF	CITATIONS
19	Deterministic quantum entanglement among multiple quantum nodes. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 034202.	0.5	2
20	Theoretical analysis of entanglement enhancement with two cascaded optical cavities. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 064205.	0.5	2
21	Deterministically entangling multiple remote quantum memories inside an optical cavity. Physical Review A, 2018, 97, .	2.5	8
22	Continuous-variable entanglement distillation between remote quantum nodes. Physical Review A, 2018, 98, .	2.5	2
23	Quantum Secret Sharing Among Four Players Using Multipartite Bound Entanglement of an Optical Field. Physical Review Letters, 2018, 121, 150502.	7.8	79
24	Deterministic quantum teleportation through fiber channels. Science Advances, 2018, 4, eaas9401.	10.3	97
25	Compact sub-kilohertz low-frequency quantum light source based on four-wave mixing in cesium vapor. Optics Letters, 2018, 43, 1243.	3.3	16
26	Establishing and storing of quantum entanglement among three Rubidium atomic ensembles. , 2018, , .		0
27	Squeezing-enhanced fiber Mach-Zehnder interferometer for low-frequency phase measurement. Applied Physics Letters, 2017, 110, .	3.3	22
28	Establishing and storing of deterministic quantum entanglement among three distant atomic ensembles. Nature Communications, 2017, 8, 718.	12.8	44
29	Generating quantum correlated twin beams by four-wave mixing in hot cesium vapor. Physical Review A, 2017, 96, .	2.5	14
30	Quantum manipulation and enhancement of deterministic entanglement between atomic ensemble and light via coherent feedback control. Quantum Science and Technology, 2017, 2, 024003.	5.8	11
31	Tripartite polarization entanglement of light and interaction between non-classical light and atomic ensembles. , 2017, , .		0
32	Deterministic generation of bright polarization squeezed state of light resonant with the rubidium D1 absorption line. Journal of the Optical Society of America B: Optical Physics, 2016, 33, 2296.	2.1	7
33	Generation of two types of nonclassical optical states using an optical parametric oscillator with a PPKTP crystal. Applied Physics Letters, 2016, 109, .	3.3	11
34	Deterministically Entangling Two Remote Atomic Ensembles via Light-Atom Mixed Entanglement Swapping. Scientific Reports, 2016, 6, 25715.	3.3	8
35	Experimental generation of tripartite polarization entangled states of bright optical beams. Applied Physics Letters, 2016, 108, 161102.	3.3	16
36	Design of low-noise photodetector with a bandwidth of 130 MHz based on transimpedance amplification circuit. Chinese Optics Letters, 2016, 14, 122701-122705.	2.9	5

#	Article	IF	CITATIONS
37	Experimental Preparation of Tripartite Polarization Entangled States Resonant with D1 Line of Rubidium. , 2016, , .		0
38	Quantum Coherent Feedback Control for Generation System of Optical Entangled State. Scientific Reports, 2015, 5, 11132.	3.3	24
39	Quantum limits for cascaded nondegenerate optical parametric oscillators. Quantum Information Processing, 2015, 14, 2945-2957.	2.2	0
40	Experimental generation of 84 dB entangled state with an optical cavity involving a wedged type-ll nonlinear crystal. Optics Express, 2015, 23, 4952.	3.4	49
41	Direct production of three-color polarization entanglement for continuous variable. Journal of the Optical Society of America B: Optical Physics, 2015, 32, 2139.	2.1	7
42	Gates for one-way quantum computation based on Einstein-Podolsky-Rosen entanglement. Physical Review A, 2014, 89, .	2.5	11
43	Preparation of multipartite entangled states used for quantum information networks. Science China: Physics, Mechanics and Astronomy, 2014, 57, 1210-1217.	5.1	33
44	Cascaded quantum logic operation with continuous variables. , 2014, , .		0
45	Demonstration of eight-partite two-diamond shape cluster state for continuous variables. Frontiers of Physics, 2013, 8, 20-26.	5.0	2
46	Gate sequence for continuous variable one-way quantum computation. Nature Communications, 2013, 4, .	12.8	100
47	Experimental preparation of eight-partite cluster state for photonic qumodes. Optics Letters, 2012, 37, 5178.	3.3	92
48	Superactivation of Multipartite Unlockable Bound Entanglement. Physical Review Letters, 2012, 108, 190501.	7.8	20
49	Experimental Realization of Three-Color Entanglement at Optical Fiber Communication and Atomic Storage Wavelengths. Physical Review Letters, 2012, 109, 253604.	7.8	68
50	Cascaded entanglement enhancement. Physical Review A, 2012, 85, .	2.5	36
51	Experimental generation of optical non-classical states of light with 1.34 μm wavelength. European Physical Journal D, 2011, 62, 433-437.	1.3	9
52	Coherent feedback control of multipartite quantum entanglement for optical fields. Physical Review A, 2011, 84, .	2.5	32
53	Investigation of the influence of extra noises in seed beams on continuous-variable entanglement generation. Chinese Physics B, 2011, 20, 034209.	1.4	3
54	Continuous variable entanglement enhancement and manipulation by a subthreshold Type II optical parametric amplifier. Optics Letters, 2010, 35, 853.	3.3	20

#	Article	IF	CITATIONS
55	Quantum communication network utilizing quadripartite entangled states of optical field. Physical Review A, 2009, 80, .	2.5	11
56	Continuous variable quantum key distribution based on optical entangled states without signal modulation. Europhysics Letters, 2009, 87, 20005.	2.0	29
57	Vacuum squeezed light for atomic memories at the D2 cesium line. Optics Express, 2009, 17, 3777.	3.4	27
58	Generation of GHZ-like and cluster-like quadripartite entangled states for continuous variable using a set of quadrature squeezed states. Science in China Series G: Physics, Mechanics and Astronomy, 2008, 51, 1-13.	0.2	14
59	Experimental investigation about the influence of pump phase noise on phase-correlation of output optical fields from a non-degenerate parametric oscillator. Europhysics Letters, 2008, 82, 24003.	2.0	8
60	Dependence of quantum correlations of twin beams on the pump finesse of an optical parametric oscillator. Journal of Physics B: Atomic, Molecular and Optical Physics, 2008, 41, 035502.	1.5	6
61	Experimental generation of genuine four-partite entangled states with total three-party correlation for continuous variables. Physical Review A, 2008, 78, .	2.5	26
62	Experimental Preparation of Quadripartite Cluster and Greenberger-Horne-Zeilinger Entangled States for Continuous Variables. Physical Review Letters, 2007, 98, 070502.	7.8	231
63	Experimental demonstration of quantum entanglement between frequency-nondegenerate optical twin beams. Optics Letters, 2006, 31, 1133.	3.3	71
64	Continuous variable quantum communication with bright entangled optical beams. Frontiers of Physics in China, 2006, 1, 383-395.	1.0	4
65	Frequency conversion of an entangled state. Physical Review A, 2006, 73, .	2.5	5
66	The influence of mode mismatch on correlation measurement in a Bell state direct detector. Journal of Optics B: Quantum and Semiclassical Optics, 2005, 7, 189-193.	1.4	4
67	Experimental Demonstration of Unconditional Entanglement Swapping for Continuous Variables. Physical Review Letters, 2004, 93, 250503.	7.8	208
68	A portable multi-purpose non-classical light source. Optics Communications, 2002, 211, 243-248.	2.1	6
69	Suppression of the intensity noise of a laser-diode-pumped single-frequency ring Nd:YVO_4–KTP green laser by ontoelectronic feedback_Ontics Letters_2001_26_695	3.3	7