Clivia M Sotomayor Torres

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2387871/clivia-m-sotomayor-torres-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 457
 10,453
 48
 82

 papers
 citations
 h-index
 g-index

 529
 11,596
 4.4
 5.94

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
457	Unraveling Heat Transport and Dissipation in Suspended MoSe from Bulk to Monolayer <i>Advanced Materials</i> , 2022 , e2108352	24	1
456	Highly-Scattering Cellulose-Based Films for Radiative Cooling Advanced Science, 2022, e2104758	13.6	8
455	Introducing surface functionality on thermoformed polymeric films. <i>Micro and Nano Engineering</i> , 2022 , 14, 100112	3.4	O
454	Spectroscopic and Thermal Characterization of Extra Virgin Olive Oil Adulterated with Edible Oils <i>Foods</i> , 2022 , 11,	4.9	2
453	Impact of surface topography on the bacterial attachment to micro- and nano-patterned polymer films <i>Surfaces and Interfaces</i> , 2021 , 27, 101494	4.1	2
452	Anisotropic Thermal Conductivity of Crystalline Layered SnSe. <i>Nano Letters</i> , 2021 , 21, 9172-9179	11.5	3
451	Optomechanical crystals for spatial sensing of submicron sized particles. <i>Scientific Reports</i> , 2021 , 11, 7829	4.9	3
450	Reversing the Humidity Response of MoS- and WS-Based Sensors Using Transition-Metal Salts. <i>ACS Applied Materials & Applied & </i>	9.5	0
449	Simulations of micro-sphere/shell 2D silica photonic crystals for radiative cooling. <i>Optics Express</i> , 2021 , 29, 16857-16866	3.3	4
448	Layered Nanocomposite 2D-TiO2 with Cu2O Nanoparticles as an Efficient Photocatalyst for 4-Chlorophenol Degradation and Hydrogen Evolution. <i>Topics in Catalysis</i> , 2021 , 64, 167-180	2.3	7
447	Heat Transport Control and Thermal Characterization of Low-Dimensional Materials: A Review. <i>Nanomaterials</i> , 2021 , 11,	5.4	3
446	Electron beam lithography for direct patterning of MoS on PDMS substrates <i>RSC Advances</i> , 2021 , 11, 19908-19913	3.7	0
445	Quantifying thermal transport in buried semiconductor nanostructures via cross-sectional scanning thermal microscopy. <i>Nanoscale</i> , 2021 , 13, 10829-10836	7.7	3
444	Antibacterial activity testing methods for hydrophobic patterned surfaces. <i>Scientific Reports</i> , 2021 , 11, 6675	4.9	8
443	Bottom-Up Development of Nanoimprinted PLLA Composite Films with Enhanced Antibacterial Properties for Smart Packaging Applications. <i>Macromol</i> , 2021 , 1, 49-63		9
442	Fabrication and characterization of large-area suspended MoSe2 crystals down to the monolayer. <i>JPhys Materials</i> , 2021 , 4, 046001	4.2	3
441	Construction of 0D/2D composites heterostructured of CdTe QDs/ZnO hybrid layers to improve environmental remediation by a direct Z-scheme. <i>Catalysis Communications</i> , 2021 , 159, 106352	3.2	

440	Injection locking in an optomechanical coherent phonon source. <i>Nanophotonics</i> , 2021 , 10, 1319-1327	6.3	2
439	Quantifying the Robustness of Topological Slow Light. <i>Physical Review Letters</i> , 2021 , 126, 027403	7.4	19
438	Real-time Optical Dimensional Metrology via Diffractometry for Nanofabrication. <i>Scientific Reports</i> , 2020 , 10, 5371	4.9	4
437	Broadband Dynamic Polarization Conversion in Optomechanical Metasurfaces. <i>Frontiers in Physics</i> , 2020 , 7,	3.9	2
436	Ferromagnetic Resonance Assisted Optomechanical Magnetometer. <i>Physical Review Letters</i> , 2020 , 125, 147201	7.4	7
435	Properties of nanocrystalline silicon probed by optomechanics. <i>Nanophotonics</i> , 2020 , 9, 4819-4829	6.3	3
434	Thermal transport in nanoporous holey silicon membranes investigated with optically induced transient thermal gratings. <i>Journal of Applied Physics</i> , 2020 , 128, 235106	2.5	2
433	2D Phononic Crystals: Progress and Prospects in Hypersound and Thermal Transport Engineering. <i>Advanced Functional Materials</i> , 2020 , 30, 1904434	15.6	25
432	Nanoscale Mapping of Thermal and Mechanical Properties of Bare and Metal-Covered Self-Assembled Block Copolymer Thin Films. <i>ACS Applied Polymer Materials</i> , 2020 , 2, 487-496	4.3	9
431	Ion bombardment induced formation of self-organized wafer-scale GaInP nanopillar assemblies. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2020, 38, 012801	1.3	1
430	Thermoreflectance techniques and Raman thermometry for thermal property characterization of nanostructures. <i>Journal of Applied Physics</i> , 2020 , 128, 131101	2.5	14
429	High-Frequency Mechanical Excitation of a Silicon Nanostring with Piezoelectric Aluminum Nitride Layers. <i>Physical Review Applied</i> , 2020 , 14,	4.3	4
428	High-temperature silicon thermal diode and switch. <i>Nano Energy</i> , 2020 , 78, 105261	17.1	16
427	Large thermoelectric power variations in epitaxial thin films of layered perovskite GdBaCo2O5.5HI with a different preferred orientation and strain. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 19975-1998	3 ¹³	1
426	Graphene related materials for thermal management. 2D Materials, 2020, 7, 012001	5.9	82
425	Fracturing of Polycrystalline MoS2 Nanofilms. ACS Applied Electronic Materials, 2020, 2, 1169-1175	4	6
424	Enhancement of Thermal Boundary Conductance of Metal-Polymer System. <i>Nanomaterials</i> , 2020 , 10,	5.4	11
423	Development of low-melting point molten salts and detection of solid-to-liquid transitions by alternative techniques to DSC. <i>Solar Energy Materials and Solar Cells</i> , 2019 , 202, 110107	6.4	4

422	Anderson Photon-Phonon Colocalization in Certain Random Superlattices. <i>Physical Review Letters</i> , 2019 , 122, 043903	7.4	21
421	Ammonium hexadeca-oxo-heptavanadate microsquares. A new member in the family of the V7O16 mixed-valence nanostructures. <i>New Journal of Chemistry</i> , 2019 , 43, 17548-17556	3.6	5
420	Modification of the Raman Spectra in Graphene-Based Nanofluids and Its Correlation with Thermal Properties. <i>Nanomaterials</i> , 2019 , 9,	5.4	10
419	Impact of the Regularization Parameter in the Mean Free Path Reconstruction Method: Nanoscale Heat Transport and Beyond. <i>Nanomaterials</i> , 2019 , 9,	5.4	4
418	Coherent generation and detection of acoustic phonons in topological nanocavities. <i>APL Photonics</i> , 2019 , 4, 030805	5.2	14
417	NanoElectronics roadmap for Europe: From nanodevices and innovative materials to system integration. <i>Solid-State Electronics</i> , 2019 , 155, 7-19	1.7	12
416	Thermal conductivity in disordered porous nanomembranes. <i>Nanotechnology</i> , 2019 , 30, 265401	3.4	6
415	Crossover from ballistic to diffusive thermal transport in suspended graphene membranes. <i>2D Materials</i> , 2019 , 6, 025034	5.9	13
414	Enhanced thermoelectric properties of lightly Nb doped SrTiO3 thin films. <i>Nanoscale Advances</i> , 2019 , 1, 3647-3653	5.1	4
413	Heterostructured 2D ZnO hybrid nanocomposites sensitized with cubic Cu2O nanoparticles for sunlight photocatalysis. <i>Journal of Materials Science</i> , 2019 , 54, 13523-13536	4.3	14
412	Nanowire forest of pnictogen-chalcogenide alloys for thermoelectricity. <i>Nanoscale</i> , 2019 , 11, 13423-1	34 3 .6⁄	2
411	Synchronization of Optomechanical Nanobeams by Mechanical Interaction. <i>Physical Review Letters</i> , 2019 , 123, 017402	7.4	28
410	A Self-Assembled 2D Thermofunctional Material for Radiative Cooling. Small, 2019, 15, e1905290	11	41
409	In-line metrology for roll-to-roll UV assisted nanoimprint lithography using diffractometry. <i>APL Materials</i> , 2018 , 6, 058502	5.7	7
408	Impact of the rise in hydrogen partial pressure on graphene shape evolution during CVD growth of graphene. <i>RSC Advances</i> , 2018 , 8, 8234-8239	3.7	7
407	Design of a Multifunctional Nanoengineered PLLA Surface by Maximizing the Synergies between Biochemical and Surface Design Bactericidal Effects. <i>ACS Omega</i> , 2018 , 3, 1509-1521	3.9	19
406	Heterostructured layered hybrid ZnO/MoS2 nanosheets with enhanced visible light photocatalytic activity. <i>Journal of Physics and Chemistry of Solids</i> , 2018 , 113, 119-124	3.9	57
405	Nanocrystalline silicon optomechanical cavities. <i>Optics Express</i> , 2018 , 26, 9829-9839	3.3	8

(2017-2018)

404	Mechanisms behind the enhancement of thermal properties of graphene nanofluids. <i>Nanoscale</i> , 2018 , 10, 15402-15409	7.7	36
403	Composites of Laminar Nanostructured ZnO and VOx-Nanotubes Hybrid as Visible Light Active Photocatalysts. <i>Catalysts</i> , 2018 , 8, 93	4	7
402	Raman thermometry analysis: Modelling assumptions revisited. <i>Applied Thermal Engineering</i> , 2018 , 130, 1175-1181	5.8	11
401	Fabrication and replication of re-entrant structures by nanoimprint lithography methods. <i>Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics</i> , 2018 , 36, 06JF01	1.3	4
400	On the Enhancement of the Thermal Conductivity of Graphene-Based Nanofluids 2018,		1
399	All-optical radio-frequency modulation of Anderson-localized modes. <i>Physical Review B</i> , 2018 , 98,	3.3	3
398	Localized thinning for strain concentration in suspended germanium membranes and optical method for precise thickness measurement. <i>AIP Advances</i> , 2018 , 8, 115131	1.5	2
397	Optical modulation of coherent phonon emission in optomechanical cavities. <i>APL Photonics</i> , 2018 , 3, 126102	5.2	7
396	Integrated 3D Hydrogel Waveguide Out-Coupler by Step-and-Repeat Thermal Nanoimprint Lithography: A Promising Sensor Device for Water and pH. <i>Sensors</i> , 2018 , 18,	3.8	8
395	Enhancement Photocatalytic Activity of the Heterojunction of Two-Dimensional Hybrid Semiconductors ZnO/V2O5. <i>Catalysts</i> , 2018 , 8, 374	4	38
394	Design of Hierarchical Surfaces for Tuning Wetting Characteristics. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 7701-7709	9.5	33
393	Thermal conductivity of epitaxially grown InP: experiment and simulation. <i>CrystEngComm</i> , 2017 , 19, 18	37 9. 388	3 7 7
392	Nonlinear dynamics and chaos in an optomechanical beam. <i>Nature Communications</i> , 2017 , 8, 14965	17.4	47
391	Angle-Dependent Photoluminescence Spectroscopy of Solution-Processed Organic Semiconducting Nanobelts. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 12441-12446	3.8	2
390	Self-assembled three-dimensional inverted photonic crystals on a photonic chip. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2017 , 214, 1700039	1.6	О
389	Optomechanical coupling in the Anderson-localization regime. <i>Physical Review B</i> , 2017 , 95,	3.3	6
388	Hierarchical surfaces for enhanced self-cleaning applications. <i>Journal of Micromechanics and Microengineering</i> , 2017 , 27, 045020	2	19
387	Directional elastic wave propagation in high-aspect-ratio photoresist gratings: liquid infiltration	7.7	3

386	Record Low Thermal Conductivity of Polycrystalline MoS Films: Tuning the Thermal Conductivity by Grain Orientation. <i>ACS Applied Materials & Samp; Interfaces</i> , 2017 , 9, 37905-37911	9.5	26
385	Thermal transport in epitaxial Si Ge alloy nanowires with varying composition and morphology. <i>Nanotechnology</i> , 2017 , 28, 505704	3.4	6
384	Unveiled electric profiles within hydrogen bonds suggest DNA base pairs with similar bond strengths. <i>PLoS ONE</i> , 2017 , 12, e0185638	3.7	5
383	Thermal conductivity and air-mediated losses in periodic porous silicon membranes at high temperatures. <i>Nature Communications</i> , 2017 , 8, 415	17.4	34
382	Self-Assembled Nanofeatures in Complex Three-Dimensional Topographies via Nanoimprint and Block Copolymer Lithography Methods. <i>ACS Omega</i> , 2017 , 2, 4417-4423	3.9	4
381	Mechanical oscillations in lasing microspheres. <i>Journal of Applied Physics</i> , 2017 , 122, 053101	2.5	4
380	Raman antenna effect from exciton-phonon coupling in organic semiconducting nanobelts. <i>Nanoscale</i> , 2017 , 9, 19328-19336	7.7	3
379	Elastic Properties of Few Nanometers Thick Polycrystalline MoS Membranes: A Nondestructive Study. <i>Nano Letters</i> , 2017 , 17, 7647-7651	11.5	19
378	Effect of the annealing on the power factor of un-doped cold-pressed SnSe. <i>Applied Thermal Engineering</i> , 2017 , 111, 1426-1432	5.8	17
377	Fabrication of phononic crystals on free-standing silicon membranes. <i>Microelectronic Engineering</i> , 2016 , 149, 41-45	2.5	25
376	Two-Dimensional Phononic Crystals: Disorder Matters. <i>Nano Letters</i> , 2016 , 16, 5661-8	11.5	91
375	Self-sustained coherent phonon generation in optomechanical cavities. <i>Journal of Optics (United Kingdom)</i> , 2016 , 18, 094006	1.7	10
374	Nanoscale pillar hypersonic surface phononic crystals. <i>Physical Review B</i> , 2016 , 94,	3.3	35
373	Acoustic Phonons in Ultrathin Free-Standing Silicon Membranes 2016 , 305-326		1
372	Orthotropic Piezoelectricity in 2D Nanocellulose. <i>Scientific Reports</i> , 2016 , 6, 34616	4.9	23
371	Synthesis and photocatalytic activity of hybrid layered ZnO(myristic acid)/Ag nanoparticles. <i>Materials Letters</i> , 2016 , 181, 8-11	3.3	2
370	Nanophononics: state of the art and perspectives. European Physical Journal B, 2016, 89, 1	1.2	124
369	A hybrid organicIhorganic layered TiO2 based nanocomposite for sunlight photocatalysis. <i>RSC Advances</i> , 2016 , 6, 18538-18541	3.7	8

(2015-2016)

368	Thermal transport in suspended silicon membranes measured by laser-induced transient gratings. <i>AIP Advances</i> , 2016 , 6, 121903	1.5	28
367	Finite element analysis of true and pseudo surface acoustic waves in one-dimensional phononic crystals. <i>Journal of Applied Physics</i> , 2016 , 119, 025308	2.5	41
366	Measurement and modeling of the effective thermal conductivity of sintered silver pastes. <i>International Journal of Thermal Sciences</i> , 2016 , 108, 185-194	4.1	20
365	Thermal conductivity of MoS 2 polycrystalline nanomembranes. 2D Materials, 2016, 3, 035016	5.9	32
364	Titanium particle incorporation in block copolymer templates. <i>Polymer</i> , 2016 , 105, 195-202	3.9	1
363	Reconstructing phonon mean-free-path contributions to thermal conductivity using nanoscale membranes. <i>Physical Review B</i> , 2015 , 91,	3.3	92
362	Electrical properties and strain distribution of Ge suspended structures. <i>Solid-State Electronics</i> , 2015 , 108, 13-18	1.7	1
361	A diffractometer for quality control in nano fabrication processing based on subwavelength diffraction 2015 ,		1
360	Tuning thermal transport in ultrathin silicon membranes by surface nanoscale engineering. <i>ACS Nano</i> , 2015 , 9, 3820-8	16.7	86
359	Optical and mechanical properties of nanofibrillated cellulose: Toward a robust platform for next-generation green technologies. <i>Carbohydrate Polymers</i> , 2015 , 126, 40-6	10.3	31
358	Nanoparticle shape anisotropy and photoluminescence properties: Europium containing ZnO as a Model Case. <i>Nanoscale</i> , 2015 , 7, 16969-82	7.7	28
357	In-line metrology setup for periodic nanostructures based on sub-wavelength diffraction 2015 ,		2
356	A Hooke?s law-based approach to protein folding rate. Journal of Theoretical Biology, 2015, 364, 407-17	2.3	8
355	A self-stabilized coherent phonon source driven by optical forces. <i>Scientific Reports</i> , 2015 , 5, 15733	4.9	23
354	Far-field characterization of the thermal dynamics in lasing microspheres. <i>Scientific Reports</i> , 2015 , 5, 14452	4.9	2
353	"LaTIMA" an innovative test stand for thermal and electrical characterization of highly conductive metals, die attach, and substrate materials 2015 ,		1
352	(Invited) Tuning of Heat Transport across Thin Films of Polycristalline AlN via Multiscale Structural Defects. <i>ECS Transactions</i> , 2015 , 69, 53-64	1	2
351	Dimensional and defectivity nanometrology of directed self-assembly patterns. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2015 , 12, 267-270		3

350	A single-source precursor route to anisotropic halogen-doped zinc oxide particles as a promising candidate for new transparent conducting oxide materials. <i>Beilstein Journal of Nanotechnology</i> , 2015 , 6, 2161-72	3	4
349	Structural characterisation of slightly Fe-doped SrTiO3 grown via a solgel hydrothermal synthesis. Journal of Sol-Gel Science and Technology, 2015 , 75, 593-601	2.3	39
348	Residual layer-free Reverse Nanoimprint Lithography on silicon and metal-coated substrates. <i>Microelectronic Engineering</i> , 2015 , 141, 56-61	2.5	12
347	Phonon dispersion in hypersonic two-dimensional phononic crystal membranes. <i>Physical Review B</i> , 2015 , 91,	3.3	64
346	Ordered 2D colloidal photonic crystals on gold substrates by surfactant-assisted fast-rate dip coating. <i>Small</i> , 2014 , 10, 1895-901	11	41
345	Embedded inkjet printed silver grids for ITO-free organic solar cells with high fill factor. <i>Solar Energy Materials and Solar Cells</i> , 2014 , 127, 50-57	6.4	39
344	Reduction of the thermal conductivity in free-standing silicon nano-membranes investigated by non-invasive Raman thermometry. <i>APL Materials</i> , 2014 , 2, 012113	5.7	106
343	Photonic Crystals: Ordered 2D Colloidal Photonic Crystals on Gold Substrates by Surfactant-Assisted Fast-Rate Dip Coating (Small 10/2014). <i>Small</i> , 2014 , 10, 1894-1894	11	
342	Modification of Akhieser mechanism in Si nanomembranes and thermal conductivity dependence of the Q-factor of high frequency nanoresonators. <i>Semiconductor Science and Technology</i> , 2014 , 29, 12401	01.8	14
341	Nanostructured p-type Cr/V2O5 thin films with boosted thermoelectric properties. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 6456-6462	13	22
340	A one-dimensional optomechanical crystal with a complete phononic band gap. <i>Nature Communications</i> , 2014 , 5, 4452	17.4	107
339	A physics-based scoring function for protein structural decoys: Dynamic testing on targets of CASP-ROLL. <i>Chemical Physics Letters</i> , 2014 , 610-611, 135-140	2.5	7
338	Nanoarchitecture Effects on Persistent Room Temperature Photoconductivity and Thermal Conductivity in Ceramic Semiconductors: Mesoporous, YolkBhell, and Hollow ZnO Spheres. <i>Crystal Growth and Design</i> , 2014 , 14, 4593-4601	3.5	21
337	A novel contactless technique for thermal field mapping and thermal conductivity determination: two-laser Raman thermometry. <i>Review of Scientific Instruments</i> , 2014 , 85, 034901	1.7	74
336	Study of the kinetics and mechanism of rapid self-assembly in block copolymer thin films during solvo-microwave annealing. <i>Langmuir</i> , 2014 , 30, 10728-39	4	32
335	Optomechanic interaction in a corrugated phoxonic nanobeam cavity. <i>Physical Review B</i> , 2014 , 89,	3.3	35
334	Synthetic Routes for the Preparation of Ordered Vanadium Oxide Inverted Opal Electrodes for Li-Ion Batteries. <i>ECS Transactions</i> , 2014 , 58, 7-14	1	2
333	Thermal Energy Harvesting 2014 , 135-219		2

Thermal Isolation Through Nanostructuring 2014, 331-363 332 1 Electrocatalytic tuning of biosensing response through electrostatic or hydrophobic 331 11.8 37 enzyme-graphene oxide interactions. Biosensors and Bioelectronics, 2014, 61, 655-62 Dynamical back-action at 5.5 GHz in a corrugated optomechanical beam. AIP Advances, 2014, 4, 124601 1.5 330 14 Cavity modes and optomechanic interactions in strip waveguide. IOP Conference Series: Materials 329 0.4 Science and Engineering, **2014**, 68, 012003 Order quantification of hexagonal periodic arrays fabricated by in situ solvent-assisted nanoimprint 328 3.4 15 lithography of block copolymers. Nanotechnology, 2014, 25, 175703 Light Scattering Investigation of 2D and 3D Opal Template Formation on Hydrophilized Surfaces. 6 327 ECS Transactions, 2014, 58, 9-18 Defect analysis and alignment quantification of line arrays prepared by directed self-assembly of a 326 2 block copolymer **2014**, High quality single crystal Ge nano-membranes for opto-electronic integrated circuitry. Journal of 325 2.5 7 Applied Physics, **2014**, 115, 144307 Hypersonic phonon propagation in one-dimensional surface phononic crystal. Applied Physics 28 324 3.4 Letters, **2014**, 104, 123108 Optical and mechanical mode tuning in an optomechanical crystal with light-induced thermal 323 2.5 4 effects. Journal of Applied Physics, 2014, 116, 093506 Tensile strain mapping in flat germanium membranes. Applied Physics Letters, 2014, 104, 172107 322 10 3.4 Formation of Titanium Nanostructures on Block Copolymer Templates with Varying Molecular 6 321 5.5 Weights. Macromolecules, 2014, 47, 8691-8699 Acoustic phonon propagation in ultra-thin Si membranes under biaxial stress field. New Journal of 16 320 2.9 Physics, 2014, 16, 073024 Transparent aluminium zinc oxide thin films with enhanced thermoelectric properties. Journal of 319 13 77 Materials Chemistry A, 2014, 2, 6649-6655 Lasing in nanoimprinted two-dimensional photonic crystal band-edge lasers. Applied Physics Letters, 318 28 3.4 2013, 102, 073101 Fabrication of highly ordered sub-20 nm silicon nanopillars by block copolymer lithography 317 7.1 24 combined with resist design. Journal of Materials Chemistry C, 2013, 1, 3544 Core-shell tin oxide, indium oxide, and indium tin oxide nanoparticles on silicon with tunable dispersion: electrochemical and structural characteristics as a hybrid Li-ion battery anode. ACS 316 26 9.5 Applied Materials & Interfaces, 2013, 5, 8195-202 Nanoscale imaging of InN segregation and polymorphism in single vertically aligned InGaN/GaN 315 11.5 32 multi quantum well nanorods by tip-enhanced Raman scattering. Nano Letters, 2013, 13, 3205-12

314	Soft-graphoepitaxy using nanoimprinted polyhedral oligomeric silsesquioxane substrates for the directed self-assembly of PS-b-PDMS. <i>European Polymer Journal</i> , 2013 , 49, 3512-3521	5.2	9
313	Direct measurement of room-temperature nondiffusive thermal transport over micron distances in a silicon membrane. <i>Physical Review Letters</i> , 2013 , 110, 025901	7.4	284
312	Electrical detection of spin precession in freely suspended graphene spin valves on cross-linked poly(methyl methacrylate). <i>Small</i> , 2013 , 9, 156-60	11	37
311	Metallic nanoparticles enhanced the spontaneous emission of semiconductor nanocrystals embedded in nanoimprinted photonic crystals. <i>Nanoscale</i> , 2013 , 5, 239-45	7.7	11
310	Lifetimes of confined acoustic phonons in ultrathin silicon membranes. <i>Physical Review Letters</i> , 2013 , 110, 095503	7.4	78
309	Ultra-thin free-standing single crystalline silicon membranes with strain control. <i>Applied Physics Letters</i> , 2013 , 102, 192108	3.4	44
308	Rechargeable Li-Ion Battery Anode of Indium Oxide with Visible to Infra-Red Transparency. <i>ECS Transactions</i> , 2013 , 53, 53-61	1	3
307	Epitaxial growth of visible to infra-red transparent conducting In2O3 nanodot dispersions and reversible charge storage as a Li-ion battery anode. <i>Nanotechnology</i> , 2013 , 24, 065401	3.4	17
306	Spatial mapping of exciton lifetimes in single ZnO nanowires. APL Materials, 2013, 1, 012103	5.7	7
305	Epitaxial growth of an antireflective, conductive, graded index ITO nanowire layer. <i>Frontiers in Physics</i> , 2013 , 1,	3.9	3
304	Non Local Corrections to the Electronic Structure of Non Ideal Electron Gases: The Case of Graphene and Tyrosine. <i>Journal of Modern Physics</i> , 2013 , 04, 522-527	0.5	2
303	Enhanced light extraction in ITO-free OLEDs using double-sided printed electrodes. <i>Nanoscale</i> , 2012 , 4, 3495-500	7.7	14
302	Nanoimprint Technologies 2012 , 117-140		
301	Polymer photonic band-gaps fabricated by nanoimprint lithography. <i>Photonics and Nanostructures - Fundamentals and Applications</i> , 2012 , 10, 632-635	2.6	3
300	Zinc Oxide Nanostructures by Solvothermal Synthesis. <i>Molecular Crystals and Liquid Crystals</i> , 2012 , 555, 40-50	0.5	15
299	Phonons in slow motion: dispersion relations in ultrathin Si membranes. <i>Nano Letters</i> , 2012 , 12, 3569-73	311.5	76
298	Noise-Assisted Crystallization of Opal Films. Advanced Functional Materials, 2012, 22, 1812-1821	15.6	27
297	Quantified Comparison of Ordering in Self-Assembled Block Copolymer Films of Different Molecular Weights by Image Analysis Method. <i>Materials Research Society Symposia Proceedings</i> , 2012 , 1412, 20		1

(2010-2012)

296	Calculation of the specific heat in ultra-thin free-standing silicon membranes. <i>Journal of Physics: Conference Series</i> , 2012 , 395, 012105	0.3	5
295	Soft Graphoepitaxy of Hexagonal PS-b-PDMS on Nanopatterned POSS Surfaces fabricated by Nanoimprint Lithography. <i>Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi]</i> , 2012 , 25, 239-244	0.7	11
294	Surface-directed dewetting of a block copolymer for fabricating highly uniform nanostructured microdroplets and concentric nanorings. <i>ACS Nano</i> , 2011 , 5, 1073-85	16.7	34
293	Zinc oxide/carboxylic acid lamellar structures. <i>Materials Research Bulletin</i> , 2011 , 46, 2191-2195	5.1	14
292	Semiconducting properties of layered cadmium sulphide-based hybrid nanocomposites. <i>Nanoscale Research Letters</i> , 2011 , 6, 523	5	14
291	The Morphology of Graphene Sheets Treated in an Ozone Generator. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 18257-18260	3.8	50
290	Fine control of critical dimension for the fabrication of large bandgap high frequency photonic and phononic crystals. <i>Microelectronic Engineering</i> , 2011 , 88, 2233-2235	2.5	4
289	Low temperature direct imprint of polyhedral oligomeric silsesquioxane (POSS) resist. <i>Microelectronic Engineering</i> , 2011 , 88, 1997-1999	2.5	3
288	Direct top-down ordering of diblock copolymers through nanoimprint lithography. <i>Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics</i> , 2011 , 29, 06F208	1.3	9
287	Experimental Evidence of Non-Diffusive Thermal Transport in Si and GaAs. <i>Materials Research Society Symposia Proceedings</i> , 2011 , 1347, 1		11
286	Damaging graphene with ozone treatment: a chemically tunable metal-insulator transition. <i>ACS Nano</i> , 2010 , 4, 4033-8	16.7	126
285	Probing the electron-phonon coupling in ozone-doped graphene by Raman spectroscopy. <i>Physical Review B</i> , 2010 , 82,	3.3	30
284	Nano-scale effects on Young's modulus of nanoimprint polymers measured by photoacoustic metrology. <i>Journal of Physics: Conference Series</i> , 2010 , 214, 012049	0.3	5
283	Magnetotransport in disordered graphene exposed to ozone: From weak to strong localization. <i>Physical Review B</i> , 2010 , 81,	3.3	122
282	Layer-by-Layer All-Inorganic Quantum-Dot-Based LEDs: A Simple Procedure with Robust Performance. <i>Advanced Functional Materials</i> , 2010 , 20, 3298-3302	15.6	54
281	Nanoimprinted plasmonic crystals for light extraction applications. <i>Microelectronic Engineering</i> , 2010 , 87, 1367-1369	2.5	8
280	New set of 2D/3D thermodynamic indices for proteins. A formalism based on Molten Globule theory. <i>Physics Procedia</i> , 2010 , 8, 63-72		7
279	Tuning the intensity of metal-enhanced fluorescence by engineering silver nanoparticle arrays.		

278	Reduced Surfactant Uptake in Three Dimensional Assemblies of VOx Nanotubes Improves Reversible Li+ Intercalation and Charge Capacity. <i>Advanced Functional Materials</i> , 2009 , 19, 1736-1745	15.6	76
277	Site-Selective Self-Assembly of Colloidal Photonic Crystals. <i>Advanced Functional Materials</i> , 2009 , 19, 12	47 5 1@5	319
276	Bottom-up growth of fully transparent contact layers of indium tin oxide nanowires for light-emitting devices. <i>Nature Nanotechnology</i> , 2009 , 4, 239-44	28.7	143
275	Stamp replication for thermal and UV nanoimprint lithography using a UV-sensitive silsesquioxane resist. <i>Microelectronic Engineering</i> , 2009 , 86, 776-778	2.5	12
274	Inline metrology configuration for sub-wavelength diffraction using microscope optics. <i>Microelectronic Engineering</i> , 2009 , 86, 1036-1039	2.5	6
273	Optoelectronic properties of a fully inorganic light emitting host-guest system: CdTe nanocrystals @ layered double hydroxide films. <i>IOP Conference Series: Materials Science and Engineering</i> , 2009 , 6, 01	2025	
272	Resonance amplification of defect emission in ZnO-inverted opal. <i>Optics Letters</i> , 2009 , 34, 1519-21	3	
271	LanthanidesElay nanocomposites: Synthesis, characterization and optical properties. <i>Materials Research Bulletin</i> , 2009 , 44, 1191-1194	5.1	14
270	Physical properties of thin nanoimprint polymer films measured by photo-acoustic metrology 2009,		1
269	Non-linear effects in luminescence of ZnO inverted opals 2008,		1
268	Chemosorption-related shift of a photonic bandgap in photoconductive ZnO inverse opal. <i>Optics Letters</i> , 2008 , 33, 461-3	3	6
267	An investigation into the growth conditions and defect states of laminar ZnO nanostructures. Journal of Materials Chemistry, 2008 , 18, 5259		22
266	ROTATIONAL SYMMETRY OF TRANSMISSION PATTERNS AND ORDERING OF OPAL PHOTONIC CRYSTALS. <i>Journal of Nonlinear Optical Physics and Materials</i> , 2008 , 17, 97-104	0.8	2
265	Bleaching-induced evolution of directional emission from dye-loaded opals. <i>Journal of Optics</i> , 2008 , 10, 115201		1
264	Sub-wavelength optical diffraction and photoacoustic metrologies for the characterisation of nanoimprinted structures 2008 ,		2
263	Fabrication of Defect-Free Nanoimprinted Photonic Crystals for Laser Applications. <i>Japanese Journal of Applied Physics</i> , 2008 , 47, 5139-5141	1.4	2
262	Inelastic light scattering by longitudinal acoustic phonons in thin silicon layers: From membranes to silicon-on-insulator structures. <i>Physical Review B</i> , 2008 , 77,	3.3	43
261	Understanding of transmission in the range of high-order photonic bands in thin opal film. <i>Applied Physics Letters</i> , 2008 , 92, 191106	3.4	28

(2007-2008)

260	Modification of emission of CdTe nanocrystals by the local field of Langmuir B lodgett colloidal photonic crystals. <i>Journal of Applied Physics</i> , 2008 , 104, 103118	2.5	9
259	Optical transmission in triple-film hetero-opals. <i>Journal of Applied Physics</i> , 2008 , 104, 013527	2.5	10
258	Modification of spontaneous emission of (CdSe)ZnS nanocrystals embedded in nanoimprinted photonic crystals. <i>Journal of Nanoscience and Nanotechnology</i> , 2008 , 8, 535-9	1.3	5
257	Low-dimensional, hinged bar-code metal oxide layers and free-standing, ordered organic nanostructures from turbostratic vanadium oxide. <i>Small</i> , 2008 , 4, 990-1000	11	12
256	Nanoimprint lithography and surface modification as prospective technologies for heterogeneous integration. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2008 , 5, 3571-3575		4
255	Electron beam induced electronic transport in alkyl amine-intercalated VOx nanotubes. <i>Physica Status Solidi (B): Basic Research</i> , 2008 , 245, 2102-2106	1.3	2
254	Light-emitting diodes with semiconductor nanocrystals. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 6538-49	16.4	284
253	Quantitative analysis of lattice ordering in thin film opal-based photonic crystals. <i>Advanced Functional Materials</i> , 2008 , 18, 2471-2479	15.6	27
252	Residual layer thickness in nanoimprint: Experiments and coarse-grain simulation. <i>Microelectronic Engineering</i> , 2008 , 85, 846-849	2.5	16
251	Effect of template defects in radiative energy relaxation of CdTe nanocrystals in nanotubes of chrysotile asbestos. <i>Microporous and Mesoporous Materials</i> , 2008 , 107, 212-218	5.3	1
250	Two-dimensional polymer photonic crystal band-edge lasers fabricated by nanoimprint lithography. <i>Applied Physics Letters</i> , 2007 , 91, 151101	3.4	30
249	Anisotropic Vanadium Oxide Nanostructured Host Matrices for Lithium Ion Intercalation. <i>Research Letters in Physical Chemistry</i> , 2007 , 2007, 1-5		1
248	Multicolor Emission on Prepatterned Substrates Using a Single Dye Species. <i>Advanced Materials</i> , 2007 , 19, 2119-2123	24	32
247	Towards Si-based photonic circuits: Integrating photonic crystals in silicon-on-insulator platforms. <i>Solid-State Electronics</i> , 2007 , 51, 333-336	1.7	3
246	Functionalization of lamellar molybdenum disulphide nanocomposite with gold nanoparticles. <i>Applied Surface Science</i> , 2007 , 253, 3444-3449	6.7	6
245	The formation of nanotubes and nanocoils of molybdenum disulphide. <i>Applied Surface Science</i> , 2007 , 253, 5185-5190	6.7	26
244	Effects of lithium on the human erythrocyte membrane and molecular models. <i>Biophysical Chemistry</i> , 2007 , 129, 36-42	3.5	25
243	Emission pattern of planar CdTe nanocrystal light source coated by two-dimensional Langmuir-Blodgett photonic crystal. <i>Materials Science and Engineering C</i> , 2007 , 27, 968-971	8.3	3

242	Nanoimprinted photonic crystals for the modification of the (CdSe)ZnS nanocrystals light emission. <i>Microelectronic Engineering</i> , 2007 , 84, 1574-1577	2.5	14
241	Embedded nano channels fabricated by non-selective reverse contact UV nanoimprint lithography technique. <i>Microelectronic Engineering</i> , 2007 , 84, 921-924	2.5	6
240	Surfactant-mediated variation of band-edge emission in CdS nanocomposites. <i>Photonics and Nanostructures - Fundamentals and Applications</i> , 2007 , 5, 45-52	2.6	5
239	Light emission from three-dimensional ensembles of CdTe nanocrystal wires templated in nanotubes of chrysotile asbestos. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2007 , 37, 21	8-221	4
238	Nanocrystal-based luminescent composites for nanoimprinting lithography. Small, 2007, 3, 822-8	11	48
237	Six-fold rotationally symmetric vanadium oxide nanostructures by a morphotropic phase transition. <i>Physica Status Solidi (B): Basic Research</i> , 2007 , 244, 4157-4160	1.3	10
236	Towards thiol functionalization of vanadium pentoxide nanotubes using gold nanoparticles. <i>Materials Research Bulletin</i> , 2007 , 42, 674-685	5.1	21
235	Photoluminescence enhancement in metallic nanocomposite printable polymer. <i>Journal of Vacuum Science & Technology B</i> , 2007 , 25, 2642		18
234	Reverse-contact UV nanoimprint lithography for multilayered structure fabrication. <i>Nanotechnology</i> , 2007 , 18, 175303	3.4	48
233	Vanadate Conformation Variations in Vanadium Pentoxide Nanostructures. <i>Journal of the Electrochemical Society</i> , 2007 , 154, K29	3.9	47
232	Benchmarking of 50nm features in thermal nanoimprint. <i>Journal of Vacuum Science & Technology B</i> , 2007 , 25, 2373		8
231	Functional patterns obtained by nanoimprinting lithography and subsequent growth of polymer brushes. <i>Nanotechnology</i> , 2007 , 18, 215301	3.4	18
230	P1G-4 Characterization of Nanoimprinting Polymer Films Using Picosecond Ultrasonics. <i>Proceedings IEEE Ultrasonics Symposium</i> , 2007 ,		1
229	Erasing diffraction orders: Opal versus Langmuir-Blodgett colloidal crystals. <i>Applied Physics Letters</i> , 2007 , 90, 133101	3.4	46
228	Spontaneous emission control of colloidal nanocrystals using nanoimprinted photonic crystals. <i>Applied Physics Letters</i> , 2007 , 90, 011115	3.4	21
227	Stochastic resonance in photonic crystal growth 2007 , 6603, 480		3
226	Lanthanide-Clay Nanocomposites: Europium(III) Complexes Intercalated in Bentonite. <i>Solid State Phenomena</i> , 2007 , 121-123, 1245-1248	0.4	1
225	Inorganic Fullerenes: From Lamellar Precursors to Functionalized Nanotubes. <i>Solid State Phenomena</i> , 2007 , 121-123, 1-4	0.4	

(2006-2007)

224	Photoluminescence enhancement in nanoimprinted photonic crystals and coupled surface plasmons. <i>Optics Express</i> , 2007 , 15, 7190-5	3.3	20
223	Atomic Layer Structure of Vanadium Oxide Nanotubes Grown on Nanourchin Structures. <i>Electrochemical and Solid-State Letters</i> , 2007 , 10, A111		22
222	Intercalation of Europium (III) species into bentonite. Materials Research Bulletin, 2006, 41, 1185-1191	5.1	23
221	Fabrication of High-Density, Large-Area Conducting-Polymer Nanostructures. <i>Advanced Functional Materials</i> , 2006 , 16, 1937-1942	15.6	76
220	Characterization of opal photonic hetero-crystals by light scattering 2006 , 6182, 66		3
219	Anisotropy of light transmission in thin film opal photonic crystals 2006 , 6182, 78		3
218	Light diffraction in nanoshell colloidal metal-dielectric photonic crystals 2006, TuB3		
217	Submicron three-dimensional structures fabricated by reverse contact UV nanoimprint lithographya). <i>Journal of Vacuum Science & Technology B</i> , 2006 , 24, 3002		19
216	(2+1)-dimensional photonic crystals from Langmuir-Blodgett colloidal multilayers. <i>Applied Physics Letters</i> , 2006 , 89, 043105	3.4	35
215	Crystallization of silica opals onto patterned silicon wafer 2006 , 6182, 392		
214	Functionalization of Bentonite by Intercalation of Surfactants. <i>Molecular Crystals and Liquid Crystals</i> , 2006 , 448, 123/[725]-131/[733]	0.5	2
213	Integration of self-assembled three-dimensional photonic crystals onto structured silicon wafers. <i>Langmuir</i> , 2006 , 22, 7378-83	4	34
212	Light Emitting OpalBased Photonic Crystal Heterojunctions 2006 , 132-152		
211	Nano-Urchin: The Formation and Structure of High-Density Spherical Clusters of Vanadium Oxide Nanotubes. <i>Chemistry of Materials</i> , 2006 , 18, 3016-3022	9.6	114
210	Comparative structural librational study of nano-urchin and nanorods of vanadium oxide. <i>Physica Status Solidi (B): Basic Research</i> , 2006 , 243, 3285-3289	1.3	29
209	Pressure induced anisotropy of electrical conductivity in polycrystalline molybdenum disulfide. <i>Applied Surface Science</i> , 2006 , 252, 7941-7947	6.7	13
208	Propagation and scattering of light in opal heterojunctions. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2006 , 32, 476-479	3	4
207	Light scattering in opal heterojunctions. <i>Photonics and Nanostructures - Fundamentals and Applications</i> , 2006 , 4, 59-68	2.6	6

206	Resonant add-drop filter based on a photonic quasicrystal. <i>Optics Express</i> , 2005 , 13, 826-35	3.3	60
205	Reflection of focused beams from opal photonic crystals. <i>Optics Express</i> , 2005 , 13, 2653-67	3.3	2
204	Light propagation in triple-film hetero-opals. <i>Progress in Solid State Chemistry</i> , 2005 , 33, 279-286	8	4
203	Polymer optical devices made by reverse and 3D nanoimprint lithography 2005 ,		3
202	Artificially inscribed defects in opal photonic crystals. <i>Microelectronic Engineering</i> , 2005 , 78-79, 429-435	2.5	25
201	Fabrication of semiconductor-and polymer-based photonic crystals using nanoimprint lithography. <i>Technical Physics</i> , 2005 , 50, 1043-1047	0.5	12
200	Numerical characterization of nanopillar photonic crystal waveguides and directional couplers. <i>Optical and Quantum Electronics</i> , 2005 , 37, 331-341	2.4	15
199	Photonic quasicrystals for application in WDM systems. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2005 , 202, 997-1001	1.6	6
198	Three-dimensional polymer structures fabricated by reversal ultraviolet-curing imprint lithography. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2005, 23, 2954		17
197	Surface plasmon resonance in gold nanoparticle infiltrated dielectric opals. <i>Journal of Applied Physics</i> , 2005 , 97, 086103	2.5	25
196	Emission stimulation in a directional band gap of a CdTe-loaded opal photonic crystal. <i>Physical Review E</i> , 2004 , 69, 046606	2.4	19
195	Structure-related optical properties of luminescent hetero-opals. <i>Journal of Applied Physics</i> , 2004 , 95, 1029-1035	2.5	30
194	Reflection, Transmission, and Scattering of Light by Photonic Crystals Based on Opal Films. <i>Russian Physics Journal</i> , 2004 , 47, 286-292	0.7	5
193	Stimulated emission due to light localization in the bandgap of disordered opals. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2004 , 1, 1522-1530		3
192	Micro and nanostructures of molybdenum trioxide (VI). <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2004 , 1, S58-S61		4
191	Observations of confined acoustic phonons in silicon membranes. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2004 , 1, 2609-2612		37
190	Embedded polymer waveguides: design and fabrication approaches. <i>Superlattices and Microstructures</i> , 2004 , 36, 201-210	2.8	13
189	Forward scattering of light in thin opal films. <i>Physical Review E</i> , 2004 , 69, 046611	2.4	9

Reflectivity behavior of opals of gold nanoparticle coated spheres. Applied Physics Letters, 2004, 84, 3969-396230 188 Towards 3D metal-dielectric photonic crystal. Optical characterization. Molecular Crystals and Liquid 187 0.5 Crystals, 2004, 415, 211-219 Pressure Induced Anisotropic Electrical Conductivity in Vanadium (V) Oxide-Based Tubular 186 8 0.5 Structures. Molecular Crystals and Liquid Crystals, 2004, 416, 49-59 Nanopillars photonic crystal waveguides. Optics Express, 2004, 12, 617-22 185 40 3.3 Light propagation in opal heterojunctions 2004, 184 2 Materials for polymer electronics applications Bemiconducting polymer thin films and 0.8 183 13 nanoparticles. Macromolecular Symposia, 2004, 212, 83-92 182 Light reflectance in opal-based metal-dielectric photonic crystals 2004, 1 Micromoulding of three-dimensional photonic crystals on silicon substrates. Nanotechnology, 2003, 181 16 3.4 14, 323-326 Three Dimensional Photonic Crystals in the Visible Regime. *Progress in Electromagnetics Research*, 180 3.8 37 2003, 41, 307-335 Nanoimprint-induced effects on electrical and optical properties of quantum well structures. 179 2.5 Microelectronic Engineering, 2003, 67-68, 214-220 A comparison of thermally and photochemically cross-linked polymers for nanoimprinting. 178 2.5 29 Microelectronic Engineering, 2003, 67-68, 266-273 Fluorescence microscopy for quality control in nanoimprint lithography. Microelectronic Engineering 2.5 , **2003**, 67-68, 623-628 Nanoimprint lithography: an alternative nanofabrication approach. Materials Science and 176 8.3 137 Engineering C, 2003, 23, 23-31 Light emission in a directional photonic bandgap. Physica Status Solidi A, 2003, 197, 662-672 175 20 Heterostructures of Polymer Photonic Crystal Films. Chemistry of Materials, 2003, 15, 3786-3792 9.6 174 99 Self-guiding in two-dimensional photonic crystals. Optics Express, 2003, 11, 1203-11 164 173 3.3 Light extinction in bulk and thin film opal photonic crystals. Synthetic Metals, 2003, 139, 601-604 172 3.6 7 Exploring integration prospects of opal-based photonic crystals. Synthetic Metals, 2003, 139, 701-704 3.6 171 10

170	Modification of the spontaneous emission of CdTe nanocrystals in TiO2 inverted opals. <i>Journal of Applied Physics</i> , 2003 , 94, 1205-1210	2.5	26
169	Structuring of self-assembled three-dimensional photonic crystals by direct electron-beam lithography. <i>Applied Physics Letters</i> , 2003 , 83, 5289-5291	3.4	48
168	Alternative Lithography. Nanostructure Science and Technology, 2003, 1-14	0.9	6
167	Nanoimprint lithography for organic electronics. <i>Microelectronic Engineering</i> , 2002 , 61-62, 25-31	2.5	59
166	Polymer stamps for nanoimprinting. <i>Microelectronic Engineering</i> , 2002 , 61-62, 393-398	2.5	31
165	Spontaneous Light Emission from a Spherical Microcavity with a Quantum Dot. <i>Physica Status Solidi A</i> , 2002 , 190, 199-203		
164	Towards Plastic Electronics: Patterning Semiconducting Polymers by Nanoimprint Lithography. <i>Advanced Materials</i> , 2002 , 14, 588	24	99
163	Self-assembly of three-dimensional photonic crystals on structured silicon wafers. <i>Applied Physics Letters</i> , 2002 , 81, 2689-2691	3.4	27
162	Suppression of spontaneous emission in incomplete opaline photonic crystal. <i>Journal of Applied Physics</i> , 2002 , 91, 9426-9428	2.5	29
161	Nanoimprint techniques 2002 , 1-60		12
161 160	Nanoimprint techniques 2002 , 1-60 Microscopic characterization of ablation craters produced by femtosecond laser pulses 2002 , 4760, 10	032	12
		032 3·4	
160	Microscopic characterization of ablation craters produced by femtosecond laser pulses 2002 , 4760, 10		3
160 159	Microscopic characterization of ablation craters produced by femtosecond laser pulses 2002 , 4760, 10 Nanoimprinted passive optical devices. <i>Nanotechnology</i> , 2002 , 13, 581-586 Edge-emitting InGaAs/GaAs lasers with deeply etched semiconductor/air distributed Bragg	3.4	3 47
160 159 158	Microscopic characterization of ablation craters produced by femtosecond laser pulses 2002 , 4760, 10 Nanoimprinted passive optical devices. <i>Nanotechnology</i> , 2002 , 13, 581-586 Edge-emitting InGaAs/GaAs lasers with deeply etched semiconductor/air distributed Bragg reflector mirrors. <i>Semiconductor Science and Technology</i> , 2002 , 17, L69-L71	3.4	3 47 5
160 159 158	Microscopic characterization of ablation craters produced by femtosecond laser pulses 2002, 4760, 10 Nanoimprinted passive optical devices. <i>Nanotechnology</i> , 2002, 13, 581-586 Edge-emitting InGaAs/GaAs lasers with deeply etched semiconductor/air distributed Bragg reflector mirrors. <i>Semiconductor Science and Technology</i> , 2002, 17, L69-L71 Silicon-based nanostructures 2002, 387-443 Photonic Crystals Based on Two-Layer Opaline Heterostructures. <i>Materials Research Society</i>	3.4	3 47 5
160 159 158 157	Microscopic characterization of ablation craters produced by femtosecond laser pulses 2002, 4760, 10 Nanoimprinted passive optical devices. <i>Nanotechnology</i> , 2002, 13, 581-586 Edge-emitting InGaAs/GaAs lasers with deeply etched semiconductor/air distributed Bragg reflector mirrors. <i>Semiconductor Science and Technology</i> , 2002, 17, L69-L71 Silicon-based nanostructures 2002, 387-443 Photonic Crystals Based on Two-Layer Opaline Heterostructures. <i>Materials Research Society Symposia Proceedings</i> , 2002, 722, 771 Large Spectral Splitting of TE and TM Components of QDs in a Microcavity. <i>Physica Status Solidi (B)</i> :	3.4 1.8	3 47 5

152	Nanoimprint lithography: challenges and prospects. <i>Nanotechnology</i> , 2001 , 12, 91-95	3.4	170
151	Electromagnetic theory of the coupling of zero-dimensional exciton and photon states: A quantum dot in a spherical microcavity. <i>Physical Review B</i> , 2001 , 64,	3.3	11
150	Thin film photonic crystals. Synthetic Metals, 2001, 116, 475-479	3.6	11
149	Light emission from thin opaline photonic crystals of low and high dielectric contrast. <i>Synthetic Metals</i> , 2001 , 124, 131-135	3.6	5
148	One-Dimensional Periodic Structures under a New Light 2001 , 173-180		
147	Emission in a SnS2 inverted opaline photonic crystal. <i>Applied Physics Letters</i> , 2001 , 79, 731-733	3.4	43
146	Diffraction of light from thin-film polymethylmethacrylate opaline photonic crystals. <i>Physical Review E</i> , 2001 , 63, 056603	2.4	130
145	Optical Characterization of Cadmium Telluride Doped Heterostructured Opaline Photonic Crystal. <i>Materials Research Society Symposia Proceedings</i> , 2001 , 694, 1		
144	Optical Characterization of Cadmium Telluride Doped Heterostructured Opaline Photonic Crystal. <i>Materials Research Society Symposia Proceedings</i> , 2001 , 707, 781		
143	Optical Characterization of Cadmium Telluride Doped Heterostructured Opaline Photonic Crystal. <i>Materials Research Society Symposia Proceedings</i> , 2001 , 708, 781		1
142	Light-exciton coupling in semiconductor microcavities of cylindrical and spherical symmetry. <i>Springer Proceedings in Physics</i> , 2001 , 699-700	0.2	
141	Thin Opaline Photonic Crystals 2001 , 253-262		6
140	Interface interactions and the photoluminescence from asbestos-templated InP quantum wires. <i>Superlattices and Microstructures</i> , 2000 , 27, 571-576	2.8	6
139	Photonic Crystal Films with High Refractive Index Contrast. <i>Advanced Materials</i> , 2000 , 12, 1499-1503	24	133
138	Optical and structural characterization of Si/SiGe heterostructures grown by RTCVD. <i>Thin Solid Films</i> , 2000 , 369, 431-435	2.2	1
137	Impact of the SiGe/Si interface structure upon the low temperature photoluminescence of a Si/Si1\(\text{BGex multiple quantum well.} \) Materials Science in Semiconductor Processing, 2000, 3, 389-393	4.3	
136	Novel linear and crosslinking polymers for nanoimprinting with high etch resistance. <i>Microelectronic Engineering</i> , 2000 , 53, 411-414	2.5	33
135	InGaAs-GaAs quantum dots for application in long wavelength (1.3 \(\bar{\pm} \) m) resonant vertical cavity enhanced devices. <i>Journal of Electronic Materials</i> , 2000 , 29, 487-493	1.9	5

134	Inelastic light scattering from electronic excitations in quantum dots. <i>Journal of Electronic Materials</i> , 2000 , 29, 576-585	1.9	14
133	Carrier relaxation mechanisms and Fermi versus non-Fermi carrier distribution in quantum dot arrays formed by activated alloy phase separation. <i>Nanotechnology</i> , 2000 , 11, 309-313	3.4	3
132	New polymer materials for nanoimprinting. <i>Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena</i> , 2000 , 18, 1861		63
131	Dye-Containing Polymer Beads as Photonic Crystals. <i>Chemistry of Materials</i> , 2000 , 12, 2508-2512	9.6	116
130	1.3 µm luminescence and gain from defect-free InGaAs-GaAs quantum dots grown by metal-organic chemical vapour deposition. <i>Semiconductor Science and Technology</i> , 2000 , 15, 604-607	1.8	52
129	Exciton polaritons in a cylindrical microcavity with an embedded quantum wire. <i>Physical Review B</i> , 2000 , 61, 13791-13797	3.3	14
128	Dielectric-Polymer Nanocomposite and Thin Film Photonic Crystals: Towards Three-Dimensional Photonic Crystals with a Bandgap in the Visible Spectrum 2000 , 23-39		
127	Photonic band-gap effects upon the light emission from a dyepolymerbpal composite. <i>Applied Physics Letters</i> , 1999 , 75, 1057-1059	3.4	55
126	Polymer issues in nanoimprinting technique. <i>Solid-State Electronics</i> , 1999 , 43, 1079-1083	1.7	42
125	Microstructures in BaTiO3 thin films by hydrothermal growth and lift-off technique. <i>Materials Science in Semiconductor Processing</i> , 1999 , 2, 335-340	4.3	5
124	Suitability of new polymer materials with adjustable glass temperature for nano-imprinting. <i>Microelectronic Engineering</i> , 1999 , 46, 431-434	2.5	28
123	Dye-Polymer@pal Composites as Photonic Crystals. <i>Physica Status Solidi (B): Basic Research</i> , 1999 , 215, 307-312	1.3	10
122	Emission properties of dye-polymer-opal photonic crystals. <i>Journal of Lightwave Technology</i> , 1999 , 17, 2121-2127	4	17
121	RT lasing and efficient optical confinement in CdSe/ZnMgSSe submonolayer superlattices. <i>Journal of Crystal Growth</i> , 1998 , 184-185, 545-549	1.6	12
120	Optical Properties and Lasing in CdSe-Submonolayers in a (Zn,Mg)(S,Se) Matrix. <i>Physica Status Solidi A</i> , 1998 , 168, 309-315		
119	RT lasing via nanoscale CdSe islands in a (Zn,Mg)(S,Se) matrix. <i>Journal of Electronic Materials</i> , 1998 , 27, 73-76	1.9	2
118	Photoluminescence and X-ray characterisation of Si/Si1\(\text{IGex multiple quantum wells.}\) <i>Journal of Luminescence</i> , 1998 , 80, 503-507	3.8	4
117	RT exciton waveguiding and lasing in submonolayer CdSe(Zn,Mg)(S,Se) structures. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 1998 , 51, 26-29	3.1	1

116	Problems of the nanoimprinting technique for nanometer scale pattern definition. <i>Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena</i> , 1998 , 16, 3917		135
115	Elastic relaxation of dry-etched Si/SiGe quantum dots. <i>Physical Review B</i> , 1998 , 58, 4825-4831	3.3	19
114	Shear strains in dry etched GaAs/AlAs wires studied by high resolution x-ray reciprocal space mapping. <i>Journal of Applied Physics</i> , 1998 , 83, 126-131	2.5	5
113	Optical Properties of InP Quantum Wires Grown in Hollow Cylindrical Channels of Chrysotile Asbestos 1998 , 255-270		О
112	Response to Comment on Cround state exciton lasing in CdSe submonolayers inserted in a ZnSe matrix [Appl. Phys. Lett. 70, 2765 (1997)]. <i>Applied Physics Letters</i> , 1997 , 70, 2766-2767	3.4	29
111	Lattice modification and luminescence of dry-etched Si-Si1-xGex quantum dots 1997 , 3007, 170		5
110	Optical properties of self-assembled arrays of InP quantum wires confined in nanotubes of chrysotile asbestos. <i>Journal of Applied Physics</i> , 1997 , 82, 380-385	2.5	29
109	Enhancement of the photonic gap of opal-based three-dimensional gratings. <i>Applied Physics Letters</i> , 1997 , 70, 2091-2093	3.4	74
108	Novel quantum confined structures via atmospheric pressure MOCVD growth in asbestos and opals. <i>Journal of Crystal Growth</i> , 1997 , 170, 611-615	1.6	37
107	Lattice distortion in dry-etched Si/SiGe quantum dot array studied by 2D reciprocal space mapping using synchrotron X-ray diffraction. <i>Thin Solid Films</i> , 1997 , 294, 300-303	2.2	3
106	Interface phenomena and optical properties of structurally confined InP quantum wire ensembles. <i>Physics of the Solid State</i> , 1997 , 39, 641-648	0.8	5
105	Controlling the strain and light emission from SiBi1⊠Gex quantum dots. <i>Thin Solid Films</i> , 1997 , 294, 304-307	2.2	2
104	Resonant photoluminescence from modulation-doped InAs ©aAs quantum dots. <i>Superlattices and Microstructures</i> , 1997 , 21, 509-516	2.8	9
103	Raman Scattering as a Diagnostic Tool of Semiconductor Nanofabrication 1997 , 331-354		
102	Energy Relaxation in Quantum Dots: Recent Developments on the Phonon Bottleneck 1996 , 287-292		1
101	Dynamics of doubly resonant Raman scattering and resonant luminescence in ultrathin InAs/GaAs quantum wells. <i>Journal of the Optical Society of America B: Optical Physics</i> , 1996 , 13, 1224	1.7	2
100	Optical spectroscopies of electronic excitations in quantum dots. <i>Surface Science</i> , 1996 , 361-362, 774-77	7 7. 8	5
99	Ground state exciton lasing in CdSe submonolayers inserted in a ZnSe matrix. <i>Applied Physics Letters</i> , 1996 , 69, 1343-1345	3.4	83

Optical Properties of Nano Crystalline InP in Opal 3-Dimensional Gratings. Materials Research 98 Society Symposia Proceedings, 1996, 452, 269 Elastic strain and enhanced light emission in dry etched Si/Si1-xGex quantum dots. Journal of 1.9 11 97 Electronic Materials, 1996, 25, 287-291 Room temperature electroluminescence of nanofabricated SiBi1\(\text{B} Gexquantum dot diodes. \) 96 2.8 17 Superlattices and Microstructures, 1996, 20, 505-511 Inelastic light scattering from electronic excitations in deep-etched quantum dots and wires. 95 1.7 Solid-State Electronics, 1996, 40, 339-342 Elastic strains in GaAsAlAs quantum dots studied by high resolution X-ray diffraction. Solid-State 94 1.7 2 Electronics, 1996, 40, 373-377 Residual strain in Si-Si1 dex quantum dots. Solid-State Electronics, 1996, 40, 383-386 93 1.7 2 Quantitative analysis of elastic strains in GaAs/AlAs quantum dots. Physica B: Condensed Matter, 2.8 8 92 **1996**, 227, 11-16 Magneto-optical properties of InAs monolayers and InyAl1As self-assembled quantum dots in 2.8 91 9 Ga(Al)As matrices. Physica B: Condensed Matter, 1996, 227, 378-383 Photoluminescence and electroluminescence study of Si?Si0.7Ge0.3 quantum dots. Applied Surface 6.7 90 7 Science, 1996, 102, 372-376 89 Fabrication and characterisation of dry etched quantum dots. Journal of Crystal Growth, 1996, 159, 434-438 4 Optical properties of ordered three-dimensional arrays of structurally confined semiconductors. 88 1.6 33 Journal of Crystal Growth, 1996, 159, 857-860 Enhanced exciton binding energy in InAs monolayers grown on (311)A GaAs substrates. Solid State 87 1.6 6 Communications, **1996**, 100, 763-767 86 Two-dimensional excitonic emission in InAs submonolayers. Physical Review B, 1996, 54, 16919-16924 3.3 22 Resonant exciton effects in InAs monolayer insertions in a GaAs matrix. Journal of Applied Physics, 85 2.5 **1996**, 79, 7164-7168 Shell Structure and Electronic Excitations of Quantum Dots in a Magnetic Field Probed by Inelastic 84 78 7.4 Light Scattering. Physical Review Letters, 1996, 77, 354-357 83 The Opal-Semiconductor System as a Possible Photonic Bandgap Material 1996, 275-282 Optical properties of Si-Si1\(\text{IG} Gex and Si-Ge nanostructures. \(\) Journal of Materials Science: Materials 82 2.1 9 in Electronics, 1995, 6, 356-362 Photoluminescence and Raman spectroscopy of quantum dots. Journal of Crystal Growth, 1995, 1.6 81 6 157, 280-284

(1995-1995)

80	Optical spectroscopy of self-organized nanoscale hetero-structures involving high-index surfaces. <i>Microelectronics Journal</i> , 1995 , 26, 871-879	1.8	19
79	Raman spectroscopy of dry etched Si?Si1\(\mathbb{Q}\)Gex quantum dots. <i>Solid State Communications</i> , 1995 , 94, 369-372	1.6	16
78	Interface structure of GaAs/AlAs superlattices grown on (113) surfaces: Raman scattering studies. <i>Solid State Communications</i> , 1995 , 94, 613-617	1.6	14
77	Photoluminescence and photoreflectance study of Si/Si0.91Ge0.09 andSi9/Ge6 quantum dots. Journal of Electronic Materials, 1995 , 24, 99-106	1.9	23
76	Process-induced strains in dry etched semiconductor nanostructures studied by photoreflectance. <i>Journal of Applied Physics</i> , 1995 , 77, 6481-6484	2.5	12
75	Energy levels and exciton oscillator strength in submonolayer InAs-GaAs heterostructures. <i>Physical Review B</i> , 1995 , 51, 14346-14351	3.3	56
74	Nanofabrication of II-VI Semiconductor Quantum Wires and Dots. <i>Materials Science Forum</i> , 1995 , 182-184, 87-92	0.4	1
73	Response to Comment: Illomment on Interest on the characterization of submonolayer and monolayer InAs structures grown in a GaAs matrix on (100) and high-index surfaces Interest of the characterist of the c	3.4	12
72	Magnetically confined plasma reactive ion etching and photoluminescence of GaAs quantum wires. <i>Semiconductor Science and Technology</i> , 1995 , 10, 1404-1407	1.8	8
71	Structural investigations of GaAs/AlAs quantum wires and quantum dots by X-ray reciprocal space mapping. <i>Journal Physics D: Applied Physics</i> , 1995 , 28, A195-A199	3	18
70	Crystalline and Quasi-crystalline Patterns in X-Ray Diffraction from Periodic Arrays of Quantum Dots. <i>Europhysics Letters</i> , 1995 , 32, 131-136	1.6	5
69	Three-dimensional phonon confinement in CdSe microcrystallites in glass. <i>Semiconductor Science and Technology</i> , 1995 , 10, 807-812	1.8	24
68	Elastic Relaxation of Pseudomorphic Strain in Quantum Dots. Solid State Phenomena, 1995, 47-48, 535-	5 ⊕0 4	4
67	An Analysis of Residual Strain in Dry Etched Semiconductor Nanostructures. <i>Solid State Phenomena</i> , 1995 , 47-48, 613-0	0.4	3
66	Elastic strains in GaAs/AlAs quantum dots studied by high-resolution x-ray diffraction. <i>Physical Review B</i> , 1995 , 52, 8348-8357	3.3	48
65	X-ray reciprocal space mapping of GaAs/AlAs quantum wires and quantum dots. <i>Applied Physics Letters</i> , 1995 , 66, 947-949	3.4	10
64	Three-Dimensional Active Gratings for Light Emission Control. <i>Materials Research Society Symposia Proceedings</i> , 1995 , 406, 289		
63	Damage, Strain and Quantum Confinement Issues in Dry Etched Semiconductor Nanostructures. <i>Materials Research Society Symposia Proceedings</i> , 1995 , 405, 99		9

62	Exciton Dynamics in Ultrathin InAs/GaAs Quantum-Wells. <i>Materials Research Society Symposia Proceedings</i> , 1995 , 406, 283		1
61	Fabrication and Luminescence of Etched Quantum Rings and Vertically Coupled Dots. <i>Materials Research Society Symposia Proceedings</i> , 1995 , 406, 307		3
60	Spectroscopy of individual quantum structures with low-temperature near field optical microscopy. Superlattices and Microstructures, 1995 , 17, 15-18	2.8	14
59	A study of the growth of CdSexS1-xcrystallites within a glass matrix. <i>Semiconductor Science and Technology</i> , 1994 , 9, 1839-1842	1.8	20
58	Photoluminescence of molecular beam epitaxial grown Al0.48In0.52As. <i>Journal of Vacuum Science</i> & <i>Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena</i> , 1994 , 12, 1319		26
57	Optical characterization of submonolayer and monolayer InAs structures grown in a GaAs matrix on (100) and high-index surfaces. <i>Applied Physics Letters</i> , 1994 , 64, 1526-1528	3.4	100
56	Low-temperature emission of Al0.48In0.52As under high pressures. <i>Journal of Applied Physics</i> , 1994 , 75, 3571-3578	2.5	4
55	Characterization of process-induced strains in GaAs/Ga0.7Al0.3As quantum dots using room-temperature photoreflectance. <i>Applied Physics Letters</i> , 1994 , 64, 2830-2832	3.4	29
54	Optical spectroscopic studies of InAs layer transformation on GaAs surfaces. <i>Physical Review B</i> , 1994 , 50, 12171-12174	3.3	44
53	Electromodulation spectroscopy of an array of modulation-doped GaAs/Ga1-xAlxAs quantum dots: Experiment and theory. <i>Physical Review B</i> , 1994 , 50, 10962-10969	3.3	15
52	Photoreflectance and photoluminescence of partially intermixed GaAs/AlGaAs double quantum wells. <i>Journal of Applied Physics</i> , 1994 , 76, 5434-5438	2.5	7
51	Optical emission and Raman scattering in modulation-doped gaAs-AlGaAs quantum wires and dots. <i>Superlattices and Microstructures</i> , 1994 , 15, 23	2.8	15
50	Resonant Raman scattering studies of multilayer (In, Ga, Al) (As, Sb) heterostructures with InAs quantum wells. <i>Solid State Communications</i> , 1994 , 91, 361-365	1.6	5
49	Nanometer fabrication techniques for wide-gap II-VI semiconductors and their optical characterization. <i>Journal of Electronic Materials</i> , 1994 , 23, 289-298	1.9	18
48	Photoluminescence intensity and multiple phonon Raman scattering in quantum dots: evidence of the bottleneck effect. <i>Surface Science</i> , 1994 , 305, 585-590	1.8	15
47	Magnetically confined plasma reactive ion etching of GaAs/AlGaAs/AlAs quantum nanostructures. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1994, 12, 3388		10
46	Magneto-optical properties in ultrathin InAs-GaAs quantum wells. <i>Physical Review B</i> , 1994 , 50, 1604-16	19.3	65
45	Determination of the Strain Status of GaAs/AlAs Quantum Wires and Quantum Dots. <i>Materials Research Society Symposia Proceedings</i> , 1994 , 358, 975		

44	Very low damage etching of GaAs. <i>Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena</i> , 1993 , 11, 2237	12
43	Multiple-phonon relaxation in GaAs-AlGaAs quantum well dots. <i>Journal of Applied Physics</i> , 1993 , 74, 5047 <u>-5</u> 05.	217
42	GaAs micrometer-sized dot imaging by Raman microscopy. <i>Journal of Applied Physics</i> , 1993 , 74, 5907-59095	16
41	Optical properties of Si/Si0.87Ge0.13 multiple quantum well wires. <i>Applied Physics Letters</i> , 1993 , 63, 497	29
40	Photoreflectance Study of Modulation-Doped GaAs/GaAlAs Quantum Dots Fabricated by Reactive-Ion Etching. <i>Materials Research Society Symposia Proceedings</i> , 1993 , 324, 187	3
39	Optical properties of Si/Si1-xGex heterostructure based wires. <i>Solid State Communications</i> , 1993 , 85, 199-202	24
38	Phonon Raman scattering in GaAs-based quantum dots. <i>Solid State Communications</i> , 1993 , 88, 63-66 1.6	4
37	Phonon Confinement and Electron-Phonon Interactions in Semiconductor Nanostructures 1993 , 437-446	2
36	Photoluminescence from Si/Si0.87Ge0.13 multiple quantum well wires. <i>European Physical Journal Special Topics</i> , 1993 , 03, 119-122	3
35	The optical properties of thin Al0.3Ga0.7As-GaAs quantum wells on misorientated substrates with (110) terraces. A study of interface roughness using photoluminescence. <i>Semiconductor Science and</i> 1.8 <i>Technology</i> , 1992 , 7, 892-899	4
34	Reactive ion etching induced damage in GaAs and Al0.3Ga0.7As using SiCl4. <i>Semiconductor Science and Technology</i> , 1992 , 7, 1189-1198	20
33	Raman scattering of coupled longitudinal optical phonon-plasmon modes in dry etched n+-GaAs. <i>Journal of Applied Physics</i> , 1992 , 71, 3754-3759	40
32	Radiative recombination in GaAs-AlxGa1NAs quantum dots. <i>Applied Physics Letters</i> , 1992 , 61, 946-948 3.4	37
31	Optical properties of a type-II GaAs/GaP strained-layer superlattice 1992 ,	3
30	Size dependence of the thermal broadening of the exciton linewidth in GaAs/Ga0.7Al0.3As single quantum wells. <i>Applied Physics Letters</i> , 1992 , 61, 1411-1413	68
29	Luminescence studies from wires of varying aspect ratio in GaAs/GaAlAs quantum wells. <i>Surface Science</i> , 1992 , 263, 622-627	10
28	Optical assessment of reactive ion etched ZnTe and ZnSe for nanostructures. <i>Surface Science</i> , 1992 , 267, 223-226	6
27	Phonon raman scattering in nanostructured multiple quantum wells. <i>Superlattices and Microstructures</i> , 1992 , 12, 469-472	1

26	Fabrication and characterization of one dimensional hole gas. <i>Superlattices and Microstructures</i> , 1992 , 12, 535-537	2.8	22
25	Luminescence and Raman Scattering Studies of Ga-As-AlGaAs Quantum Dots. <i>Springer Series in Solid-state Sciences</i> , 1992 , 289-299	0.4	1
24	Reactive ion etching of II-VI semiconductors using a mixture of methane and hydrogen. <i>Electronics Letters</i> , 1991 , 27, 73-75	1.1	21
23	Reactive ion etching of InP and its optical assessment 1991,		4
22	Linear and nonlinear optical properties of CdSexS1N microcrystallites. <i>Superlattices and Microstructures</i> , 1991 , 9, 421-426	2.8	9
21	High-resolution dry etching of zinc telluride: characterization of etched surfaces by X-ray photoelectron spectroscopy, photoluminescence and Raman scattering. <i>Semiconductor Science and Technology</i> , 1991 , 6, A115-A122	1.8	23
20	Intrinsic mechanism for the poor luminescence properties of quantum-box systems. <i>Physical Review B</i> , 1991 , 44, 10945-10948	3.3	761
19	Raman Scattering of III-V and II-VI Semiconductor Microstructures. <i>NATO ASI Series Series B: Physics</i> , 1991 , 247-255		1
18	Surface phonons in GaAs cylinders. Semiconductor Science and Technology, 1990, 5, 285-290	1.8	71
17	Optical spectroscopy of GaAs-based nanostructures. <i>Surface Science</i> , 1990 , 228, 275-279	1.8	5
16	Photoluminescence of AlinAs under hydrostatic pressure. <i>Semiconductor Science and Technology</i> , 1989 , 4, 243-245	1.8	5
15	Photoluminescence of overgrown GaAs-GaAlAs quantum dots. <i>Superlattices and Microstructures</i> , 1989 , 5, 459-463	2.8	51
14	Raman scattering investigations of the damage caused by reactive-ion-etching of GaAs. <i>Superlattices and Microstructures</i> , 1988 , 4, 243-244	2.8	8
13	Raman Scattering of Reactive-ion Etched GaAs. <i>Journal of Modern Optics</i> , 1988 , 35, 365-370	1.1	26
12	X-ray scattering from a single-quantum-well heterostructure. <i>Semiconductor Science and Technology</i> , 1987 , 2, 241-243	1.8	24
11	Far infrared magneto-optics of InAs1-xPxalloys under hydrostatic pressure. <i>Semiconductor Science and Technology</i> , 1987 , 2, 323-328	1.8	8
10	Raman scattering from GaInAs?InP quantum well structures. <i>Superlattices and Microstructures</i> , 1987 , 3, 75-78	2.8	5
9	Growth and characterisation of quantum wells and selectively doped heterostructures of InP/Ga0.47In0.53As grown by solid source MBE. <i>Journal of Crystal Growth</i> , 1987 , 81, 288-295	1.6	39

LIST OF PUBLICATIONS

8	p-type modulation-doped AlGaAs/GaAs heterostructures grown by atmospheric-pressure metal organic vapour phase epitaxy (MOVPE). <i>Electronics Letters</i> , 1987 , 23, 605-606	1.1	2
7	Magneto-transport studies in MBE-grown GalnAs?InP heterostructures under hydrostatic pressure. <i>Surface Science</i> , 1986 , 170, 464-469	1.8	1
6	Bound Exciton, Free-To-Bound and Electron-Hole Plasma Luminescence in GaxIn1⊠P (0.54 ? x ? 0.76). <i>Physica Status Solidi (B): Basic Research</i> , 1985 , 129, 279-286	1.3	2
5	Room-Temperature Silicon Platform for GHz-Frequency Nanoelectro-Opto-Mechanical Systems. <i>ACS Photonics</i> ,	6.3	4
4	Coherent phonon generation in optomechanical crystals. SPIE Newsroom,		2
3	Thermal Properties of Nanocrystalline Silicon Nanobeams. Advanced Functional Materials,2105767	15.6	2
2	Non-Optical Lithography209		
1	Advances in Nanoimprint Lithography: 2-D and 3-D Nanopatterning of Surfaces by Nanoimoprint Lithography, Morphological Characterization, and Photonic Applications165		