Jeremy P Koelmel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2387691/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A lipidome atlas in MS-DIAL 4. Nature Biotechnology, 2020, 38, 1159-1163.	17.5	424
2	Harmonizing lipidomics: NIST interlaboratory comparison exercise for lipidomics using SRM 1950–Metabolites in Frozen Human Plasma. Journal of Lipid Research, 2017, 58, 2275-2288.	4.2	312
3	LipidMatch: an automated workflow for rule-based lipid identification using untargeted high-resolution tandem mass spectrometry data. BMC Bioinformatics, 2017, 18, 331.	2.6	243
4	Expanding Lipidome Coverage Using LC-MS/MS Data-Dependent Acquisition with Automated Exclusion List Generation. Journal of the American Society for Mass Spectrometry, 2017, 28, 908-917.	2.8	156
5	Lipid Annotator: Towards Accurate Annotation in Non-Targeted Liquid Chromatography High-Resolution Tandem Mass Spectrometry (LC-HRMS/MS) Lipidomics Using a Rapid and User-Friendly Software. Metabolites, 2020, 10, 101.	2.9	69
6	Effective Liquid Chromatography–Trapped Ion Mobility Spectrometry–Mass Spectrometry Separation of Isomeric Lipid Species. Analytical Chemistry, 2019, 91, 5021-5027.	6.5	64
7	Toward Comprehensive Per- and Polyfluoroalkyl Substances Annotation Using FluoroMatch Software and Intelligent High-Resolution Tandem Mass Spectrometry Acquisition. Analytical Chemistry, 2020, 92, 11186-11194.	6.5	63
8	Common cases of improper lipid annotation using high-resolution tandem mass spectrometry data and corresponding limitations in biological interpretation. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2017, 1862, 766-770.	2.4	58
9	Optimization of Electrospray Ionization Source Parameters for Lipidomics To Reduce Misannotation of In-Source Fragments as Precursor Ions. Analytical Chemistry, 2018, 90, 13523-13532.	6.5	54
10	Quality control requirements for the correct annotation of lipidomics data. Nature Communications, 2021, 12, 4771.	12.8	54
11	Pioglitazone improves hepatic mitochondrial function in a mouse model of nonalcoholic steatohepatitis. American Journal of Physiology - Endocrinology and Metabolism, 2018, 315, E163-E173.	3.5	50
12	FluoroMatch 2.0—making automated and comprehensive non-targeted PFAS annotation a reality. Analytical and Bioanalytical Chemistry, 2022, 414, 1201-1215.	3.7	48
13	LipidQC: Method Validation Tool for Visual Comparison to SRM 1950 Using NIST Interlaboratory Comparison Exercise Lipid Consensus Mean Estimate Values. Analytical Chemistry, 2017, 89, 13069-13073.	6.5	37
14	A Review of Efforts to Improve Lipid Stability during Sample Preparation and Standardization Efforts to Ensure Accuracy in the Reporting of Lipid Measurements. Lipids, 2021, 56, 3-16.	1.7	37
15	NIST lipidomics workflow questionnaire: an assessment of community-wide methodologies and perspectives. Metabolomics, 2018, 14, 53.	3.0	33
16	A Robust Lipidomics Workflow for Mammalian Cells, Plasma, and Tissue Using Liquid-Chromatography High-Resolution Tandem Mass Spectrometry. Methods in Molecular Biology, 2017, 1609, 91-106.	0.9	31
17	The Efficient Removal of Heavy Metal Ions from Industry Effluents Using Waste Biomass as Low-Cost Adsorbent: Thermodynamic and Kinetic Models. Zeitschrift Fur Physikalische Chemie, 2018, 232, 527-543.	2.8	31
18	Software Comparison for Nontargeted Analysis of PFAS in AFFF-Contaminated Soil. Journal of the American Society for Mass Spectrometry, 2021, 32, 840-846.	2.8	31

JEREMY P KOELMEL

#	Article	IF	CITATIONS
19	Exploring the external exposome using wearable passive samplers - The China BAPE study. Environmental Pollution, 2021, 270, 116228.	7.5	30
20	LipidPioneer : A Comprehensive User-Generated Exact Mass Template for Lipidomics. Journal of the American Society for Mass Spectrometry, 2017, 28, 562-565.	2.8	28
21	Prevalence and Implications of Per- and Polyfluoroalkyl Substances (PFAS) in Settled Dust. Current Environmental Health Reports, 2021, 8, 323-335.	6.7	25
22	Tissue distribution of perfluoroalkyl acids and health status in wild Mozambique tilapia (Oreochromis mossambicus) from Loskop Dam, Mpumalanga, South Africa. Journal of Environmental Sciences, 2017, 61, 59-67.	6.1	24
23	Environmental lipidomics: understanding the response of organisms and ecosystems to a changing world. Metabolomics, 2020, 16, 56.	3.0	24
24	Bibliometric Analysis of Phytotechnologies for Remediation: Global Scenario of Research and Applications. International Journal of Phytoremediation, 2015, 17, 145-153.	3.1	23
25	Developmental exposure of California mice to endocrine disrupting chemicals and potential effects on the microbiome-gut-brain axis at adulthood. Scientific Reports, 2020, 10, 10902.	3.3	23
26	Yale School of Public Health Symposium: An overview of the challenges and opportunities associated with per- and polyfluoroalkyl substances (PFAS). Science of the Total Environment, 2021, 778, 146192.	8.0	22
27	Changes in Sewage Sludge Chemical Signatures During a COVIDâ€19 Community Lockdown, Part 1: Traffic, Drugs, Mental Health, and Disinfectants. Environmental Toxicology and Chemistry, 2022, 41, 1179-1192.	4.3	22
28	Software tool for internal standard based normalization of lipids, and effect of data-processing strategies on resulting values. BMC Bioinformatics, 2019, 20, 217.	2.6	21
29	Chronic maternal cortisol excess during late gestation leads to metabolic alterations in the newborn heart. American Journal of Physiology - Endocrinology and Metabolism, 2019, 316, E546-E556.	3.5	21
30	Use of Exposomic Methods Incorporating Sensors in Environmental Epidemiology. Current Environmental Health Reports, 2021, 8, 34-41.	6.7	21
31	Occurrence and contamination profile of legacy and emerging per- and polyfluoroalkyl substances (PFAS) in Belgian wastewater using target, suspect and non-target screening approaches. Journal of Hazardous Materials, 2022, 437, 129378.	12.4	21
32	Addressing the challenges of E-cigarette safety profiling by assessment of pulmonary toxicological response in bronchial and alveolar mucosa models. Scientific Reports, 2020, 10, 20460.	3.3	20
33	Head, Shoulders, Knees, and Toes: Placement of Wearable Passive Samplers Alters Exposure Profiles Observed. Environmental Science & Technology, 2021, 55, 3796-3806.	10.0	19
34	Multiomics approach reveals metabolic changes in the heart at birth. American Journal of Physiology - Endocrinology and Metabolism, 2018, 315, E1212-E1223.	3.5	18
35	Evolution of the liver biopsy and its future. Translational Gastroenterology and Hepatology, 2021, 6, 20-20.	3.0	18
36	Optimization of a liquid chromatography-ion mobility-high resolution mass spectrometry platform for untargeted lipidomics and application to HepaRG cell extracts. Talanta, 2021, 235, 122808.	5.5	18

JEREMY P KOELMEL

#	Article	IF	CITATIONS
37	Exploring personal chemical exposures in China with wearable air pollutant monitors: A repeated-measure study in healthy older adults in Jinan, China. Environment International, 2021, 156, 106709.	10.0	16
38	Assessing the External Exposome Using Wearable Passive Samplers and High-Resolution Mass Spectrometry among South African Children Participating in the VHEMBE Study. Environmental Science & Technology, 2022, 56, 2191-2203.	10.0	16
39	Mass Spectrometric Methodologies for Investigating the Metabolic Signatures of Parkinson's Disease: Current Progress and Future Perspectives. Analytical Chemistry, 2018, 90, 2979-2986.	6.5	15
40	Lipidomics for wildlife disease etiology and biomarker discovery: a case study of pansteatitis outbreak in South Africa. Metabolomics, 2019, 15, 38.	3.0	11
41	Re-modeling of foliar membrane lipids in a seagrass allows for growth in phosphorus-deplete conditions. PLoS ONE, 2019, 14, e0218690.	2.5	11
42	Examining heat treatment for stabilization of the lipidome. Bioanalysis, 2018, 10, 291-305.	1.5	10
43	Ultrahigh-Performance Liquid Chromatography–High-Resolution Mass Spectrometry Metabolomics and Lipidomics Study of Stool from Transgenic Parkinson's Disease Mice Following Immunotherapy. Journal of Proteome Research, 2020, 19, 424-431.	3.7	6
44	Lipidomics and Redox Lipidomics Indicate Early Stage Alcoholâ€Induced Liver Damage. Hepatology Communications, 2022, 6, 513-525.	4.3	6
45	A Novel Technique for Redox Lipidomics Using Mass Spectrometry: Application on Vegetable Oils Used to Fry Potatoes. Journal of the American Society for Mass Spectrometry, 2021, 32, 1798-1809.	2.8	5
46	Characterizing the external exposome using passive samplers—comparative assessment of chemical exposures using different wearable form factors. Journal of Exposure Science and Environmental Epidemiology, 2023, 33, 558-565.	3.9	4
47	A histological evaluation of pansteatitisâ€affected Mozambique tilapia, Oreochromis mossambicus (Peters 1852), from different geographical locations in South Africa. Journal of Fish Diseases, 2020, 43, 1185-1199.	1.9	1
48	50 chemical exposures of concern discovered using wearable passive samplers and gas chromatography high-resolution mass spectrometry in South African children. ISEE Conference Abstracts, 2021, 2021, .	0.0	0
49	FluoroMatch: A Comprehensive Software for Non-Targeted PFAS Analysis. ISEE Conference Abstracts, 2021, 2021, .	0.0	0
50	Personal External Exposomes from Around the World. ISEE Conference Abstracts, 2021, 2021, .	0.0	0