
Scott L Anderson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2387648/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modular terpene synthesis enabled by mild electrochemical couplings. Science, 2022, 375, 745-752.	12.6	62
2	High-Temperature Oxidation of Single Carbon Nanoparticles: Dependence on the Surface Structure and Probing Real-Time Structural Evolution via Kinetics. Journal of the American Chemical Society, 2022, 144, 4897-4912.	13.7	5
3	The interaction of size-selected Ru ₃ clusters with RF-deposited TiO ₂ : probing Ru–CO binding sites with CO-temperature programmed desorption. Nanoscale Advances, 2021, 3, 3537-3553.	4.6	4
4	O2-oxidation of individual graphite and graphene nanoparticles in the 1200–2200ÂK range: Particle-to-particle variations and the evolution of the reaction rates and optical properties. Carbon, 2021, 173, 286-300.	10.3	8
5	Selective growth of Al2O3 on size-selected platinum clusters by atomic layer deposition. Surface Science, 2020, 691, 121485.	1.9	10
6	Thermal Emission Spectroscopy of Single, Isolated Carbon Nanoparticles: Effects of Particle Size, Material, Charge, Excitation Wavelength, and Thermal History. Journal of Physical Chemistry C, 2020, 124, 1704-1716.	3.1	12
7	Sublimation Kinetics for Individual Graphite and Graphene Nanoparticles (NPs): NP-to-NP Variations and Evolving Structure-Kinetics and Structure-Emissivity Relationships. Journal of the American Chemical Society, 2020, 142, 14090-14101.	13.7	10
8	Alloying with Sn Suppresses Sintering of Size-Selected Subnano Pt Clusters on SiO ₂ with and without Adsorbates. Chemistry of Materials, 2020, 32, 8595-8605.	6.7	19
9	Effects of acetonitrile-assisted ball-milled aluminum nanoparticles on the ignition of acoustically levitated exo-tetrahydrodicyclopentadiene (JP-10) droplets. Chemical Physics Letters, 2020, 754, 137679.	2.6	16
10	Coking-Resistant Sub-Nano Dehydrogenation Catalysts: Pt _{<i>n</i>} Sn _{<i>x</i>} /SiO ₂ (<i>n</i> = 4, 7). ACS Catalysis, 2020, 10, 4543-4558.	11.2	40
11	Sn-modification of Pt7/alumina model catalysts: Suppression of carbon deposition and enhanced thermal stability. Journal of Chemical Physics, 2020, 152, 024702.	3.0	25
12	Oxidation of Aluminum Particles from 1 to 10 nm in Diameter: The Transition from Clusters to Nanoparticles. Journal of Physical Chemistry C, 2019, 123, 23721-23731.	3.1	9
13	Preparation of Size- and Composition-Controlled Pt <i>_n</i> Sn <i>_x</i> /SiO ₂ (<i>n</i> = 4, 7, 24) Bimetallic Model Catalysts with Atomic Layer Deposition. Journal of Physical Chemistry C, 2019, 123, 16194-16209.	3.1	25
14	Phthalocyanines as a π–π Adsorption Strategy to Immobilize Catalyst on Carbon for Electrochemical Synthesis. Synlett, 2019, 30, 1187-1193.	1.8	3
15	Scalable and safe synthetic organic electroreduction inspired by Li-ion battery chemistry. Science, 2019, 363, 838-845.	12.6	305
16	A cryogenic single nanoparticle action spectrometer. Review of Scientific Instruments, 2019, 90, 125110.	1.3	8
17	Oxidation of a Levitated Droplet of 1-Allyl-3-methylimidazolium Dicyanamide by Nitrogen Dioxide. Journal of Physical Chemistry A, 2019, 123, 400-416.	2.5	7
18	Thermal emission spectroscopy for single nanoparticle temperature measurement: optical system design and calibration. Applied Optics, 2019, 58, 642.	1.8	13

#	Article	IF	CITATIONS
19	Diborane Interactions with Pt ₇ /Alumina: Preparation of Size-Controlled Borated Pt Model Catalysts. Journal of Physical Chemistry C, 2018, 122, 1631-1644.	3.1	17
20	Spectroscopic Study on the Intermediates and Reaction Rates in the Oxidation of Levitated Droplets of Energetic Ionic Liquids by Nitrogen Dioxide. Journal of Physical Chemistry A, 2018, 122, 7351-7377.	2.5	24
21	Combustion Behavior of High Energy Density Borane–Aluminum Nanoparticles in Hypergolic Ionic Liquids. Energy & Fuels, 2018, 32, 7898-7908.	5.1	10
22	Ethylene Dehydrogenation on Pt _{4,7,8} Clusters on Al ₂ O ₃ : Strong Cluster Size Dependence Linked to Preferred Catalyst Morphologies. ACS Catalysis, 2017, 7, 3322-3335.	11.2	124
23	Inherent Size Effects on XANES of Nanometer Metal Clusters: Size-Selected Platinum Clusters on Silica. Journal of Physical Chemistry C, 2017, 121, 361-374.	3.1	52
24	Boron Switch for Selectivity of Catalytic Dehydrogenation on Size-Selected Pt Clusters on Al ₂ O ₃ . Journal of the American Chemical Society, 2017, 139, 11568-11575.	13.7	103
25	Spectroscopic Investigation of the Primary Reaction Intermediates in the Oxidation of Levitated Droplets of Energetic Ionic Liquids. Journal of Physical Chemistry Letters, 2017, 8, 6053-6059.	4.6	17
26	Borane–Aluminum Surface Interactions: Enhanced Fracturing and Generation of Boron–Aluminum Core–Shell Nanoparticles. Journal of Physical Chemistry C, 2017, 121, 14176-14190.	3.1	8
27	Aluminum Nanoparticle Production by Acetonitrile-Assisted Milling: Effects of Liquid- vs Vapor-Phase Milling and of Milling Method on Particle Size and Surface Chemistry. Journal of Physical Chemistry C, 2016, 120, 19613-19629.	3.1	20
28	Electrocatalysis by Mass-Selected Pt _{<i>n</i>} Clusters. Accounts of Chemical Research, 2016, 49, 2632-2639.	15.6	79
29	Effect of O ₂ and CO Exposure on the Photoelectron Spectroscopy of Size-Selected Pd _{<i>n</i>} Clusters Supported on TiO ₂ (110). Journal of Physical Chemistry C, 2016, 120, 2126-2138.	3.1	15
30	Single Nanoparticle Mass Spectrometry as a High Temperature Kinetics Tool: Sublimation, Oxidation, and Emission Spectra of Hot Carbon Nanoparticles. Journal of Physical Chemistry A, 2015, 119, 12538-12550.	2.5	13
31	Size-dependent electronic structure controls activity for ethanol electro-oxidation at Pt _n /indium tin oxide (n = 1 to 14). Physical Chemistry Chemical Physics, 2015, 17, 17601-17610.	2.8	54
32	Thermally Brightened CdSe/ZnS Quantum Dots as Noncontact Probes for Surface Chemistry Studies of Dark Nanoparticles Trapped in the Gas Phase. Journal of Physical Chemistry C, 2015, 119, 14561-14570.	3.1	13
33	Effects of Alumina Thickness on CO Oxidation Activity over Pd ₂₀ /Alumina/Re(0001): Correlated Effects of Alumina Electronic Properties and Pd ₂₀ Geometry on Activity. Journal of Physical Chemistry C, 2015, 119, 1359-1375.	3.1	23
34	In situ X-ray Scattering and Dynamical Modeling of Pd Catalyst Nanoparticles Formed in Flames. Journal of Physical Chemistry C, 2015, 119, 19073-19082.	3.1	10
35	Reprint of "Mass-selected supported cluster catalysts: Size effects on CO oxidation activity, electronic structure, and thermal stability of Pd /alumina (n≤30) model catalysts― International Journal of Mass Spectrometry, 2015, 377, 263-277.	1.5	5
36	Binding of Alkenes and Ionic Liquids to B–H-Functionalized Boron Nanoparticles: Creation of Particles with Controlled Dispersibility and Minimal Surface Oxidation. ACS Applied Materials & Interfaces, 2015, 7, 9991-10003.	8.0	29

#	Article	IF	CITATIONS
37	Cluster Size Controls Branching between Water and Hydrogen Peroxide Production in Electrochemical Oxygen Reduction at Pt _{<i>n</i>} /ITO. Journal of Physical Chemistry C, 2015, 119, 11160-11170.	3.1	68
38	Rapid Aluminum Nanoparticle Production by Milling in NH ₃ and CH ₃ NH ₂ Atmospheres: An Experimental and Theoretical Study. ACS Applied Materials & Interfaces, 2015, 7, 16101-16116.	8.0	21
39	Initial and Final State Effects in the Ultraviolet and X-ray Photoelectron Spectroscopy (UPS and XPS) of Size-Selected Pd _{<i>n</i>} Clusters Supported on TiO ₂ (110). Journal of Physical Chemistry C, 2015, 119, 6033-6046.	3.1	56
40	Mass-selected supported cluster catalysts: Size effects on CO oxidation activity, electronic structure, and thermal stability of Pdn/alumina (nâ‰ 9 0) model catalysts. International Journal of Mass Spectrometry, 2014, 370, 1-15.	1.5	16
41	Photoluminescence of Charged CdSe/ZnS Quantum Dots in the Gas Phase: Effects of Charge and Heating on Absorption and Emission Probabilities. ACS Nano, 2014, 8, 12534-12548.	14.6	15
42	Thermal and adsorbate effects on the activity and morphology of size-selected Pdn/TiO2 model catalysts. Surface Science, 2014, 621, 40-50.	1.9	20
43	Optically detected, single nanoparticle mass spectrometer with pre-filtered electrospray nanoparticle source. Review of Scientific Instruments, 2014, 85, 014104.	1.3	25
44	Synthesis of Nanoparticles from Malleable and Ductile Metals Using Powder-Free, Reactant-Assisted Mechanical Attrition. ACS Applied Materials & Interfaces, 2014, 6, 19579-19591.	8.0	30
45	Oxygen activation and CO oxidation over size-selected Pt _n /alumina/Re(0001) model catalysts: correlations with valence electronic structure, physical structure, and binding sites. Physical Chemistry Chemical Physics, 2014, 16, 26443-26457.	2.8	40
46	Single CdSe/ZnS Nanocrystals in an Ion Trap: Charge and Mass Determination and Photophysics Evolution with Changing Mass, Charge, and Temperature. ACS Nano, 2014, 8, 2387-2398.	14.6	39
47	Boron Nanoparticles with High Hydrogen Loading: Mechanism for B–H Binding and Potential for Improved Combustibility and Specific Impulse. ACS Applied Materials & Interfaces, 2014, 6, 8513-8525.	8.0	30
48	Effects of Translational and Vibrational Excitation on the Reaction of HOD ⁺ with C ₂ H ₂ and C ₂ D ₂ : Mode- and Bond-Specific Effects in Exoergic Proton Transfer. Journal of Physical Chemistry A, 2014, 118, 8360-8372.	2.5	1
49	In Situ Small-Angle X-ray Scattering from Pd Nanoparticles Formed by Thermal Decomposition of Organo-Pd Catalyst Precursors Dissolved in Hydrocarbons. Journal of Physical Chemistry C, 2013, 117, 22627-22635.	3.1	16
50	Alumina support and Pdn cluster size effects on activity of Pdn for catalytic oxidation of CO. Faraday Discussions, 2013, 162, 323.	3.2	35
51	Functionalization and Passivation of Boron Nanoparticles with a Hypergolic Ionic Liquid. Journal of Propulsion and Power, 2013, 29, 489-495.	2.2	27
52	Exploring the Structure of Nitrogen-Rich Ionic Liquids and Their Binding to the Surface of Oxide-Free Boron Nanoparticles. Journal of Physical Chemistry C, 2013, 117, 5693-5707.	3.1	45
53	Effects of Collisional and Vibrational Velocity on Proton and Deuteron Transfer in the Reaction of HOD ⁺ with CO. Journal of Physical Chemistry A, 2013, 117, 1083-1093.	2.5	4
54	Strong Effects of Cluster Size and Air Exposure on Oxygen Reduction and Carbon Oxidation Electrocatalysis by Size-Selected Pt _{<i>n</i>} (<i>n</i> ≤1) on Glassy Carbon Electrodes. Journal of the American Chemical Society, 2013, 135, 3073-3086.	13.7	109

#	Article	IF	CITATIONS
55	Note: Hollow cathode lamp with integral, high optical efficiency isolation valve: A modular vacuum ultraviolet source. Review of Scientific Instruments, 2013, 84, 126101.	1.3	7
56	Vibrationally enhanced charge transfer and mode/bond-specific H+ and D+ transfer in the reaction of HOD+ with N2O. Journal of Chemical Physics, 2013, 139, 114305.	3.0	3
57	CO adsorption and desorption on size-selected Pdn/TiO2(110) model catalysts: Size dependence of binding sites and energies, and support-mediated adsorption. Journal of Chemical Physics, 2012, 136, 204705.	3.0	58
58	Tuning azolium azolate ionic liquids to promote surface interactions with titanium nanoparticles leading to increased passivation and colloidal stability. Physical Chemistry Chemical Physics, 2012, 14, 13194.	2.8	8
59	Hypergolic ionic liquids to mill, suspend, and ignite boron nanoparticles. Chemical Communications, 2012, 48, 4311.	4.1	72
60	Reaction of HOD+with NO2: Effects of OD and OH Stretching, Bending, and Collision Energy on Reactions on the Singlet and Triplet Potential Surfaces. Journal of Physical Chemistry A, 2011, 115, 1172-1185.	2.5	6
61	H+ versus D+ transfer from HOD+ to N2: Mode- and bond-selective effects. Journal of Chemical Physics, 2011, 135, 044305.	3.0	3
62	Reaction of C2H2+ (n·ν22, m·ν5) with NO2: Reaction on the singlet and triplet surfaces. Journal of Chemical Physics, 2011, 134, 034313.	3.0	4
63	H+ versus D+ transfer from HOD+ to CO2: Bond-selective chemistry and the anomalous effect of bending excitation. Journal of Chemical Physics, 2011, 134, 064312.	3.0	5
64	Methane ignition catalyzed by in situ generated palladium nanoparticles. Combustion and Flame, 2010, 157, 421-435.	5.2	40
65	Size-Dependent Oxygen Activation Efficiency over Pd _{<i>n</i>} /TiO ₂ (110) for the CO Oxidation Reaction. Journal of the American Chemical Society, 2010, 132, 13097-13099.	13.7	79
66	Air-stable, unoxidized, hydrocarbon-dispersible boron nanoparticles. Journal of Materials Research, 2009, 24, 3462-3464.	2.6	54
67	Cluster size effects on sintering, CO adsorption, and implantation in Ir/SiO2. Journal of Chemical Physics, 2009, 131, 114701.	3.0	26
68	Size-dependent oxidation of Pdn (n⩽13) on alumina/NiAl(110): Correlation with Pd core level binding energies. Surface Science, 2009, 603, 2764-2770.	1.9	81
69	In Situ Generation of Pd/PdO Nanoparticle Methane Combustion Catalyst: Correlation of Particle Surface Chemistry with Ignition. Journal of Physical Chemistry C, 2009, 113, 20632-20639.	3.1	36
70	Oxide-Free, Catalyst-Coated, Fuel-Soluble, Air-Stable Boron Nanopowder as Combined Combustion Catalyst and High Energy Density Fuel. Energy & Fuels, 2009, 23, 6111-6120.	5.1	132
71	Electronic Structure Controls Reactivity of Size-Selected Pd Clusters Adsorbed on TiO ₂ Surfaces. Science, 2009, 326, 826-829.	12.6	552
72	The origin of the large bending enhancement of the reaction of C2H2+ with methane: the effects of bending momentum, ruling out the precursor mechanism, and steps toward "Polanyi rules―for polyatomic reactions. Physical Chemistry Chemical Physics, 2009, 11, 8721.	2.8	6

#	Article	IF	CITATIONS
73	Effects of Bending and Bending Angular Momentum on Reaction of NO ₂ ⁺ with C ₂ H ₂ : A Quasi-Classical Trajectory Study. Journal of Physical Chemistry A, 2009, 113, 3911-3921.	2.5	6
74	Water on Rutile TiO2(110) and Au/TiO2(110): Effects on Au Mobility and the Isotope Exchange Reaction. Journal of Physical Chemistry C, 2008, 112, 9006-9015.	3.1	35
75	Vibrational effects on the reaction of NO2+ with C2H2: Effects of bending and bending angular momentum. Journal of Chemical Physics, 2008, 128, 114304.	3.0	9
76	Multiphoton Ionization State Selection: Vibrational-Mode and Rotational-State Control. Advances in Chemical Physics, 2007, , 177-212.	0.3	47
77	Multiphoton ionization vibrational state selection of H2O+, D2O+ and HDO+. Chemical Physics Letters, 2007, 440, 171-175.	2.6	16
78	Vibrational mode and collision energy effects on reaction of H2CO+ with CO2. Physical Chemistry Chemical Physics, 2006, 8, 4575.	2.8	3
79	State-Selective Preparation of NO2+and the Effects of NO2+Vibrational Mode on Charge Transfer with NOâ€. Journal of Physical Chemistry A, 2006, 110, 1278-1287.	2.5	6
80	Breakdown and Combustion of JP-10 Fuel Catalyzed by Nanoparticulate CeO2and Fe2O3. Energy & Fuels, 2006, 20, 1886-1894.	5.1	122
81	Thermal decomposition of JP-10 studied by micro-flowtube pyrolysis-mass spectrometry. Combustion and Flame, 2006, 144, 662-674.	5.2	61
82	Cluster size effects on hydrazine decomposition on Irn/Al2O3/NiAl(110). Surface Science, 2006, 600, 461-467.	1.9	27
83	The effects of collision energy, vibrational mode, and vibrational angular momentum on energy transfer and dissociation in NO2+–rare gas collisions: An experimental and trajectory study. Journal of Chemical Physics, 2006, 125, 133115.	3.0	26
84	Inert, pulsed, ultrahigh-vacuum-compatible doser for study of hydrazine decomposition on a model Irâ^•Al2O3â^•NiAl(110) catalyst. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2006, 24, 269-274.	2.1	2
85	Agglomeration, Sputtering, and Carbon Monoxide Adsorption Behavior for Au/Al2O3Prepared by Aun+Deposition on Al2O3/NiAl(110). Journal of Physical Chemistry B, 2005, 109, 11340-11347.	2.6	38
86	Dynamical control of â€~statistical' ion–molecule reactions. International Journal of Mass Spectrometry, 2005, 241, 173-184.	1.5	20
87	Agglomeration, support effects, and CO adsorption on Au/TiO2(110) prepared by ion beam deposition. Surface Science, 2005, 578, 5-19.	1.9	92
88	Vibrational mode and collision energy effects on reaction of H2CO+ with C2H2: Charge state competition and the role of Franck-Condon factors in endoergic charge transfer. Journal of Chemical Physics, 2005, 123, 204313.	3.0	8
89	Direct Dynamics Trajectory Study of the Reaction of Formaldehyde Cation with D2:Â Vibrational and Zero-Point Energy Effects on Quasiclassical Trajectoriesâ€. Journal of Physical Chemistry A, 2005, 109, 11376-11384.	2.5	18
90	Cluster size effects on CO oxidation activity, adsorbate affinity, and temporal behavior of model Aunâ^•TiO2 catalysts. Journal of Chemical Physics, 2005, 123, 124710.	3.0	87

#	Article	IF	CITATIONS
91	Hydrazine Decomposition over Irn/Al2O3Model Catalysts Prepared by Size-Selected Cluster Deposition. Journal of Physical Chemistry B, 2005, 109, 381-388.	2.6	36
92	Vibrational mode and collision energy effects on reaction of H2CO+ with C2D4. Journal of Chemical Physics, 2004, 121, 11746-11759.	3.0	10
93	Reaction of formaldehyde cation with molecular hydrogen: Effects of collision energy and H2CO+ vibrations. Journal of Chemical Physics, 2004, 120, 8528-8536.	3.0	14
94	Direct Dynamics Trajectory Study of Vibrational Effects:Â Can Polanyi Rules Be Generalized to a Polyatomic System?. Journal of the American Chemical Society, 2004, 126, 8602-8603.	13.7	38
95	CO Oxidation on Aun/TiO2Catalysts Produced by Size-Selected Cluster Deposition. Journal of the American Chemical Society, 2004, 126, 5682-5683.	13.7	338
96	Vibrational Mode Effects as a Probe of Inter-channel Coupling in the Reactions of Formaldehyde Cation with Ammonia and Waterâ€. Journal of Physical Chemistry A, 2004, 108, 9945-9956.	2.5	14
97	Deposition dynamics and chemical properties of size-selected Ir clusters on TiO2. Surface Science, 2003, 542, 253-275.	1.9	62
98	Pyrolysis Chemistry of Cubane and Methylcubane:  The Effect of Methyl Substitution on Stability and Product Branching. Journal of Physical Chemistry A, 2003, 107, 1162-1174.	2.5	39
99	Direct dynamics study of energy transfer and collision-induced dissociation: Effects of impact energy, geometry, and reactant vibrational mode in H2CO+–Ne collisions. Journal of Chemical Physics, 2003, 119, 3040-3050.	3.0	55
100	Reaction of formaldehyde cation with methane: Effects of collision energy and H2CO+ and methane vibrations. Journal of Chemical Physics, 2003, 119, 200-214.	3.0	23
101	Collision-induced dissociation of formaldehyde cations: The effects of vibrational mode, collision energy, and impact parameter. Journal of Chemical Physics, 2002, 116, 5530-5543.	3.0	38
102	Sintering, oxidation, and chemical properties of size-selected nickel clusters on TiO2(110). Journal of Chemical Physics, 2002, 117, 5001-5011.	3.0	48
103	The effects of vibrational mode and collision energy on the reaction of formaldehyde cation with carbonyl sulfide. Journal of Chemical Physics, 2002, 117, 8292-8307.	3.0	20
104	Effects of Collision and Vibrational Energy on the Reaction of CH3CHO+(ν) with C2D4â€. Journal of Physical Chemistry A, 2002, 106, 9798-9808.	2.5	6
105	Multiphoton ionization and photoelectron spectroscopy of formaldehyde via its 3p Rydberg states. Journal of Chemical Physics, 2001, 114, 9797-9806.	3.0	39
106	Complex formation and decay in ion-molecule reactions: Mode-selective scattering as a dynamical probe. International Reviews in Physical Chemistry, 2001, 20, 165-188.	2.3	30
107	Vibrational and collision energy effects on the reaction of CH3CHO+ with methanol. Journal of Chemical Physics, 2001, 115, 5843-5858.	3.0	11
108	Multiphoton ionization and photoelectron spectroscopy of 1,3-trans-butadiene via its 3dπ Rydberg state. Journal of Chemical Physics, 2001, 114, 6618-6624.	3.0	6

#	Article	IF	CITATIONS
109	The influence of collision and vibrational energy on the reaction of CH3CHO+ with acetylene. Journal of Chemical Physics, 2001, 114, 7838-7847.	3.0	9
110	Multiphoton ionization photoelectron spectroscopy of acetaldehyde via the Ãf 1A″, B̃, C̃, and D̃ state Journal of Chemical Physics, 2001, 114, 3018-3028.	^{2S} 3.0	17
111	Reaction of acetaldehyde cations with water: The effects of CH3CHO+ vibrational mode and impact parameter on reactivity and product branching. Journal of Chemical Physics, 2001, 115, 1274-1286.	3.0	11
112	Complex formation and decay in ion-molecule reactions: mode-selective scattering as a dynamical probe. International Reviews in Physical Chemistry, 2001, 20, 165-188.	2.3	4
113	Simplified radio-frequency generator for driving ion guides, traps, and other capacitive loads. Review of Scientific Instruments, 2000, 71, 4335.	1.3	36
114	Kinematic sample mounting system for accurate positioning of transferrable samples. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2000, 18, 2603.	2.1	7
115	Charge transfer between ND3+(\hat{l} /22+) and phenol. Journal of Chemical Physics, 2000, 113, 11079-11083.	3.0	5
116	Complex formation, rearrangement, and reaction in PhOH++ND3: Vibrational mode effects, recoil velocities, andab initiostudies. Journal of Chemical Physics, 2000, 113, 4158-4170.	3.0	24
117	Vibrational mode and collision energy effects on proton transfer in phenol cation–methylamine collisions. Journal of Chemical Physics, 2000, 112, 10831-10837.	3.0	12
118	Proton transfer in the [phenol-NH3]+ system: An experimental and ab initio study. Journal of Chemical Physics, 2000, 112, 5717-5721.	3.0	49
119	Hydride abstraction by NO+ from ethanol: Effects of collision energy and ion rotational state. Journal of Chemical Physics, 2000, 113, 3002-3010.	3.0	22
120	Transition-metal C60 bonding by guided ion beam scattering. International Journal of Mass Spectrometry, 1999, 185-187, 603-615.	1.5	19
121	Cluster–surface collisions by phase-space compressed guided-ion beam methods. Nuclear Instruments & Methods in Physics Research B, 1999, 157, 144-154.	1.4	8
122	Reactions of Boron Oxide and BnOmH+ Cluster Ions with Water. Journal of Physical Chemistry A, 1999, 103, 226-234.	2.5	11
123	Pyrolysis and Isomerization of Quadricyclane, Norbornadiene, and Toluene. Journal of Physical Chemistry A, 1998, 102, 9202-9212.	2.5	21
124	A phase-space-compressing, mass-selecting beamline for hyperthermal, focused ion beam deposition. Review of Scientific Instruments, 1998, 69, 4106-4115.	1.3	34
125	A mode-selective differential scattering study of the C2H2++methanol reaction: Influence of collision intermediates, collision times, and transition states. Journal of Chemical Physics, 1998, 108, 7173-7184.	3.0	23
126	Vibrational mode-selected differential scattering of NH3+ methanol (d1, d3, d4): Control of product branching by hydrogen-bonded complex formation. Journal of Chemical Physics, 1998, 108, 2395-2407.	3.0	27

#	Article	IF	CITATIONS
127	Interaction of small boron cluster ions with HF. Journal of Chemical Physics, 1997, 106, 9511-9522.	3.0	56
128	Collisions of rare gas ions with C60: Endohedral formation, energy transfer, and scattering dynamics. Journal of Chemical Physics, 1997, 107, 8370-8379.	3.0	20
129	Dynamics of the C2H2++ ND3Reaction:Â A Vibrational-Mode-Selective Scattering Study. Journal of Physical Chemistry A, 1997, 101, 6504-6512.	2.5	26
130	Mode-Selective Differential Scattering as a Probe of Polyatomic Ion Reaction Mechanisms. Accounts of Chemical Research, 1997, 30, 28-36.	15.6	33
131	Boron Oxide Oligomer Collision-Induced Dissociation:Â Thermochemistry, Structure, and Implications for Boron Combustion. Journal of Physical Chemistry A, 1997, 101, 9935-9941.	2.5	26
132	Simple radio-frequency power source for ion guides and ion traps. Review of Scientific Instruments, 1997, 68, 3357-3362.	1.3	48
133	Low energy, high resolution ion scattering mass spectrometry of strained molecules and their isomers. International Journal of Mass Spectrometry and Ion Processes, 1997, 167-168, 269-279.	1.8	4
134	A triple sector, guided-ion-beam mass spectrometer for cluster ion and fullerene scattering. International Journal of Mass Spectrometry and Ion Processes, 1997, 171, 159-172.	1.8	4
135	Kinetic parameters for heterogenous boron combustion reactions via the Cluster Beam approach. Combustion and Flame, 1996, 105, 68-79.	5.2	16
136	Reaction mechanisms and energy disposal in the [C2H2:OCS]+ system: A modeâ€selective differential cross section study. Journal of Chemical Physics, 1996, 105, 3089-3107.	3.0	37
137	Vibrational mode effects and energy disposal in reactions of polyatomic ions. , 1995, 2548, 286.		0
138	Interaction of Mn+ and Mn2+ with C60. Exohedral and endohedral metal-fullerene bonding. Chemical Physics Letters, 1995, 243, 45-48.	2.6	42
139	Use of a quadrupole mass filter for high energy resolution ion beam production. Review of Scientific Instruments, 1995, 66, 3706-3708.	1.3	16
140	Dissociation Energies for Small Carbon Cluster Ions (C2-19+) Measured by Collision-Induced Dissociation. The Journal of Physical Chemistry, 1995, 99, 10736-10741.	2.9	69
141	State-Selected C2H2+ Reactions with Methane at High Internal Energies. H+ and H- Transfer Reactions, Two New Channels in the C2H2+ A State Region. The Journal of Physical Chemistry, 1995, 99, 15523-15531.	2.9	13
142	Effects of Composition, Structure, and H Atom Addition on the Chemistry of Boron Oxide Cluster Ions with HF. The Journal of Physical Chemistry, 1995, 99, 16276-16283.	2.9	19
143	Vibrational mode effects, scattering dynamics, and energy disposal in reaction of C2H+2with methane. Journal of Chemical Physics, 1995, 102, 1199-1216.	3.0	63
144	Vibrational mode and collision energy effects on a highly constrained reaction: OCS+(ν)+OCS→CS+2+CO2 and S+2+2 CO. Journal of Chemical Physics, 1995, 102, 1188-1191.	3.0	16

#	Article	IF	CITATIONS
145	N–O versus N–N bond activation in reaction of N2O with carbon cluster ions: Experimental andabinitiostudies of the effects of geometric and electronic structure. Journal of Chemical Physics, 1994, 100, 8784-8794.	3.0	20
146	Ion beam studies of atomic ion collisions with C60: chemistry at surface, substitutional, and endohedral sites. International Journal of Mass Spectrometry and Ion Processes, 1994, 138, 173-185.	1.8	19
147	Large, modeâ€ s elective vibrational effect on the reaction of C2H+2 with methane. Journal of Chemical Physics, 1994, 101, 5410-5412.	3.0	49
148	Collision of alkali ions with C60/C70: Insertion, thermionic emission, and fragmentation. Journal of Chemical Physics, 1993, 99, 5858-5870.	3.0	90
149	Ne++C60 collisions: The dynamics of charge and energy transfer, fragmentation, and endohedral complex formation. Journal of Chemical Physics, 1993, 99, 3468-3479.	3.0	71
150	Fullerene (C61+) production and decomposition in carbon-13 (1+) + fullerene (C60) collisions: carbon-atom exchange and the fragmentation pattern as a function of energy. The Journal of Physical Chemistry, 1992, 96, 3574-3576.	2.9	65
151	Nitrogen ion (N+) + C60 fullerene reactive scattering: substitution, charge transfer, and fragmentation. The Journal of Physical Chemistry, 1992, 96, 10597-10600.	2.9	57
152	Collision ofLi+andNa+withC60: Insertion, fragmentation, and thermionic emission. Physical Review Letters, 1992, 69, 1352-1355.	7.8	110
153	Oxidation of small carbon cluster ions by O2: Effects of structure on the reaction mechanism. Journal of Chemical Physics, 1992, 97, 8164-8172.	3.0	15
154	Ne++C60: Collision energy and impact parameter dependence for endohedral complex formation, fragmentation, and charge transfer. Journal of Chemical Physics, 1992, 96, 3344-3347.	3.0	98
155	Comparison of bending, C–C stretching, and collision energy effects on the reaction of C2H+2with D2. Journal of Chemical Physics, 1992, 96, 5781-5788.	3.0	25
156	Chemistry of metal and semimetal cluster ions. Chemical Reviews, 1992, 92, 1541-1565.	47.7	127
157	O++C60· C60O+ production and decomposition, charge transfer, and formation of C59O+. Dopeyball or [CO@C58+. Chemical Physics Letters, 1992, 199, 373-378.	2.6	65
158	Reactions of boron cluster ions (B+n,n=2–24) with N2O: NO versus NN bond activation as a function of size. Journal of Chemical Physics, 1991, 94, 6446-6458.	3.0	81
159	Cluster ion beam study of a system with structural isomers: C+n+D2 (n=2–12). Chemical Physics Letters, 1991, 177, 146-152.	2.6	21
160	The effects of vibrational mode, spin–orbit state, and collision energy on collisionâ€induced dissociation and predissociation of OCS+. Journal of Chemical Physics, 1991, 95, 3275-3282.	3.0	24
161	Dissociation energies for carbon cluster ions (C+2–15): A system where photodissociation is misleading. Journal of Chemical Physics, 1991, 95, 4719-4720.	3.0	54
162	The effects of reactant vibrational, fine structure, and collision energy on the reactions of OCS+with C2H2: Complementary studies of reactions in the [C2H2+OCS]+system. Journal of Chemical Physics, 1991, 94, 6459-6468.	3.0	25

#	Article	IF	CITATIONS
163	Boron cluster ion oxidation: Reactions with CO2, dissociation of boron cluster oxide (BnO+) ions, and sequential oxidation. Journal of Chemical Physics, 1991, 94, 2833-2847.	3.0	68
164	Vibrational Mode Effects in Polyatomic Ion Reactions. , 1991, , 183-196.		0
165	Semiconductor Cluster Ion Reactions and Energetics. , 1991, , 117-130.		0
166	Size Dependent Reactions of Boron and Carbon Cluster Ions. Materials Research Society Symposia Proceedings, 1990, 206, 121.	0.1	0
167	Interaction of boron cluster ions with water: Single collision dynamics and sequential etching. Journal of Chemical Physics, 1990, 92, 292-303.	3.0	97
168	The effects of different vibrational modes and collision energy on the reaction of acetylene cations with carbonyl sulfide. Journal of Chemical Physics, 1990, 92, 7356-7364.	3.0	32
169	Collision-induced dissociation and ab initio studies of boron cluster ions: determination of structures and stabilities [Erratum to document cited in CA109(18):156723t]. The Journal of Physical Chemistry, 1990, 94, 2218-2218.	2.9	9
170	Dynamics of boron cluster ion reactions with deuterium: Adduct formation and decay. Journal of Chemical Physics, 1989, 91, 226-239.	3.0	53
171	The effects of bending and stretching vibration on the reaction of acetylene cations with methane. Journal of Chemical Physics, 1989, 90, 1577-1587.	3.0	46
172	Collision-induced dissociation and ab initio studies of boron cluster ions: determination of structures and stabilities. The Journal of Physical Chemistry, 1988, 92, 5803-5812.	2.9	244
173	Reaction of aluminum cluster ions with oxygen and nitrous oxide: Energetics and dynamics of cluster oxidation. Journal of Chemical Physics, 1988, 89, 273-286.	3.0	37
174	Oxidation of small boron cluster ions (B+1–13) by oxygen. Journal of Chemical Physics, 1988, 89, 2848-2860.	3.0	91
175	Multiphoton ionization photoelectron spectroscopy study of OCS: Rydberg vibronic structure and ion state selection. Journal of Chemical Physics, 1988, 89, 5527-5534.	3.0	39
176	Production and collision-induced dissociation of small boron cluster ions. The Journal of Physical Chemistry, 1987, 91, 5161-5163.	2.9	91
177	Fragmentation of acetone following excitation in the region of the oxygen K edge. Journal of Chemical Physics, 1987, 86, 4442-4445.	3.0	37
178	MPI photoelectron spectroscopy of ungerade excited states of acetylene: Intermediate state mixing and ion state selection. Journal of Chemical Physics, 1987, 87, 852-860.	3.0	62
179	Collisionâ€induced dissociation of aluminum cluster ions: Fragmentation patterns, bond energies, and structures for Al+2–Al+7. Journal of Chemical Physics, 1987, 87, 260-268.	3.0	160
180	GeradeRydberg states of acetylene studied by multiphoton ionization and photoelectron spectroscopy. Journal of Chemical Physics, 1987, 87, 5105-5115.	3.0	65

#	Article	IF	CITATIONS
181	Metal Cluster Ion Chemistry. Proceedings of SPIE, 1986, , .	0.8	0
182	Third harmonic interference effects in the mpi spectrum of acetylene. Chemical Physics Letters, 1986, 129, 31-35.	2.6	23
183	Reactions of bare aluminum cluster ions. Chemical Physics Letters, 1986, 129, 429-432.	2.6	20
184	Observation of circular dichroism in photoelectron angular distributions. Journal of Chemical Physics, 1986, 85, 6803-6804.	3.0	38
185	Fragmentation of nitrous oxide by monochromatic soft x rays. Journal of Chemical Physics, 1986, 85, 5755-5762.	3.0	89
186	Chemistry and cooling of transition metal cluster ions. Chemical Physics Letters, 1985, 122, 410-414.	2.6	40
187	Multiphoton ionization photoelectron spectroscopy of phenol: Vibrational frequencies and harmonic force field for the 2B1 cation. Journal of Chemical Physics, 1985, 82, 5329-5339.	3.0	66
188	Resonance-enhanced multiphoton ionization of molecular hydrogen via the E,F1Σg+ state: Photoelectron energy and angular distributions. Chemical Physics Letters, 1984, 105, 22-27.	2.6	96
189	Nonadiabaticity in ion–molecule reactions: Coupling of proton and charge transfer in the H+2 and D+2+Ar system. Journal of Chemical Physics, 1982, 77, 748-755.	3.0	44
190	The effects of collision energy and ion vibrational excitation on proton and charge transfer in H2++N2, CO, O2. Journal of Chemical Physics, 1982, 77, 1842-1854.	3.0	58
191	Multiphoton ionization photoelectron spectroscopy: a new method for determining vibrational structure of molecular ions. Chemical Physics Letters, 1982, 93, 11-15.	2.6	73
192	Vibrational effects in proton and charge transfer in the H+2 + Ar system. Chemical Physics Letters, 1981, 82, 392-395.	2.6	22
193	The effect of vibration and translational energy on the reaction dynamics of the H+2 +H2 system. Journal of Chemical Physics, 1981, 75, 2153-2162.	3.0	76
194	Reaction of magnetically state selected NO with O3: Effect of fs states and rotational states on reactivity. Journal of Chemical Physics, 1980, 72, 6521-6528.	3.0	25
195	Photoionization of (H2)2 and the clusters of O2 molecules. Journal of Chemical Physics, 1980, 73, 4779-4783.	3.0	48
196	Proton affinities of hydrogen halides determined by the molecular beam photoionization method. Journal of Chemical Physics, 1979, 71, 605-609.	3.0	55