Filipa M Marcelo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/23876/publications.pdf

Version: 2024-02-01

54 papers 1,592 citations

279798 23 h-index 315739 38 g-index

55 all docs 55 docs citations

55 times ranked 2549 citing authors

#	Article	IF	CITATIONS
1	Atomic and Specificity Details of Mucin $1 < i > O < /i >$ -Glycosylation Process by Multiple Polypeptide GalNAc-Transferase Isoforms Unveiled by NMR and Molecular Modeling. Jacs Au, 2022, 2, 631-645.	7.9	12
2	Structural basis for the synthesis of the core 1 structure by C1GalT1. Nature Communications, 2022, 13 , 2398 .	12.8	8
3	Crystal Structure of the Carbohydrate Recognition Domain of the Human Macrophage Galactose C-Type Lectin Bound to GalNAc and the Tumor-Associated Tn Antigen. Biochemistry, 2021, 60, 1327-1336.	2.5	20
4	Structural Insights into the Molecular Recognition Mechanism of the Cancer and Pathogenic Epitope, LacdiNAc by Immuneâ€Related Lectins. Chemistry - A European Journal, 2021, 27, 7951-7958.	3.3	4
5	SLMP53-1 interacts with wild-type and mutant p53 DNA-binding domain and reactivates multiple hotspot mutations. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129440.	2.4	13
6	Molecular basis for the preferential recognition of β1,3â€1,4â€glucans by the family 11 carbohydrateâ€binding module from <i>ClostridiumÂthermocellum</i>). FEBS Journal, 2020, 287, 2723-2743.	4.7	9
7	Structural Characterization of Nâ€Linked Glycans in the Receptor Binding Domain of the SARSâ€CoVâ€2 Spike Protein and their Interactions with Human Lectins. Angewandte Chemie, 2020, 132, 23971-23979.	2.0	9
8	Structural characterization of an unprecedented lectin-like antitumoral anti-MUC1 antibody. Chemical Communications, 2020, 56, 15137-15140.	4.1	10
9	Glucosylpolyphenols as Inhibitors of Aβ-Induced Fyn Kinase Activation and Tau Phosphorylation: Synthesis, Membrane Permeability, and Exploratory Target Assessment within the Scope of Type 2 Diabetes and Alzheimer's Disease. Journal of Medicinal Chemistry, 2020, 63, 11663-11690.	6.4	17
10	Structural Characterization of Nâ€Linked Glycans in the Receptor Binding Domain of the SARSâ€CoVâ€2 Spike Protein and their Interactions with Human Lectins. Angewandte Chemie - International Edition, 2020, 59, 23763-23771.	13.8	81
11	Molecular basis for fibroblast growth factor 23 O-glycosylation by GalNAc-T3. Nature Chemical Biology, 2020, 16, 351-360.	8.0	52
12	The Plasticity of the Carbohydrate Recognition Domain Dictates the Exquisite Mechanism of Binding of Human Macrophage Galactoseâ€7ype Lectin. Chemistry - A European Journal, 2019, 25, 13945-13955.	3.3	24
13	Identification of a secondary binding site in human macrophage galactose-type lectin by microarray studies: Implications for the molecular recognition of its ligands. Journal of Biological Chemistry, 2019, 294, 1300-1311.	3.4	31
14	Structural Analysis of a GalNAcâ€T2 Mutant Reveals an Inducedâ€Fit Catalytic Mechanism for GalNAcâ€Ts. Chemistry - A European Journal, 2018, 24, 8382-8392.	3.3	16
15	Acetylcholinesterase Choline-Based Ionic Liquid Inhibitors: In Vitro and in Silico Molecular Docking Studies. ACS Omega, 2018, 3, 17145-17154.	3.5	9
16	Structural and Mechanistic Insights into the Catalytic-Domain-Mediated Short-Range Glycosylation Preferences of GalNAc-T4. ACS Central Science, 2018, 4, 1274-1290.	11.3	35
17	Molecular Recognition of a Thomsen–Friedenreich Antigen Mimetic Targeting Human Galectinâ€3. ChemMedChem, 2018, 13, 2030-2036.	3.2	13
18	Role of the sugar moiety on the opioid receptor binding and conformation of a series of enkephalin neoglycopeptides. Bioorganic and Medicinal Chemistry, 2017, 25, 2260-2265.	3.0	3

#	Article	IF	CITATIONS
19	The interdomain flexible linker of the polypeptide GalNAc transferases dictates their long-range glycosylation preferences. Nature Communications, 2017, 8, 1959.	12.8	37
20	Protein–Glycan Quinary Interactions in Crowding Environment Unveiled by NMR Spectroscopy. Chemistry - A European Journal, 2017, 23, 13213-13220.	3.3	20
21	Glycosyltransferase inhibitors: a promising strategy to pave a path from laboratory to therapy. Carbohydrate Chemistry, 2017, , 135-158.	0.3	9
22	<scp>D</scp> â€and <scp>L</scp> â€Mannoseâ€Containing <i>glyco</i> â€ÂOligoamides Show Distinct Recognition Properties When Interacting with DNA. European Journal of Organic Chemistry, 2015, 2015, 6180-6193.	2.4	9
23	Detection of Tumor-Associated Glycopeptides by Lectins: The Peptide Context Modulates Carbohydrate Recognition. ACS Chemical Biology, 2015, 10, 747-756.	3.4	39
24	Beyond a Fluorescent Probe: Inhibition of Cell Division Protein FtsZ by <i>mant</i> Fi>-GTP Elucidated by NMR and Biochemical Approaches. ACS Chemical Biology, 2015, 10, 2382-2392.	3.4	9
25	The Quest for Anticancer Vaccines: Deciphering the Fine-Epitope Specificity of Cancer-Related Monoclonal Antibodies by Combining Microarray Screening and Saturation Transfer Difference NMR. Journal of the American Chemical Society, 2015, 137, 12438-12441.	13.7	35
26	Influence of polar side chains modifications on the dual enkephalinase inhibitory activity and conformation of human opiorphin, a pain perception related peptide. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 5190-5193.	2.2	1
27	Delineating Binding Modes of Gal/GalNAc and Structural Elements of the Molecular Recognition of Tumorâ∈Associated Mucin Glycopeptides by the Human Macrophage Galactoseâ€Type Lectin. Chemistry - A European Journal, 2014, 20, 16147-16155.	3.3	46
28	Cooperative Hydrogen Bonding in Glyco–Oligoamides: DNA Minor Groove Binders in Aqueous Media. Chemistry - A European Journal, 2014, 20, 17640-17652.	3.3	8
29	Exploiting the Therapeutic Potential of 8-β <scp>d</scp> -Glucopyranosylgenistein: Synthesis, Antidiabetic Activity, and Molecular Interaction with Islet Amyloid Polypeptide and Amyloid β-Peptide (1–42). Journal of Medicinal Chemistry, 2014, 57, 9463-9472.	6.4	39
30	Natural Compounds against Alzheimer's Disease: Molecular Recognition of Aβ1–42 Peptide by <i>Salvia sclareoides</i> Extract and its Major Component, Rosmarinic Acid, as Investigated by NMR. Chemistry - an Asian Journal, 2013, 8, 596-602.	3.3	77
31	Molecular Recognition of Rosmarinic Acid from <i>Salviaâ€sclareoides</i> Extracts by Acetylcholinesterase: A New Binding Site Detected by NMR Spectroscopy. Chemistry - A European Journal, 2013, 19, 6641-6649.	3.3	34
32	Interactions of Bacterial Cell Division Protein FtsZ with C8-Substituted Guanine Nucleotide Inhibitors. A Combined NMR, Biochemical and Molecular Modeling Perspective. Journal of the American Chemical Society, 2013, 135, 16418-16428.	13.7	28
33	NHCâ€Capped Cyclodextrins (ICyDs): Insulated Metal Complexes, Commutable Multicoordination Sphere, and Cavityâ€Dependent Catalysis. Angewandte Chemie - International Edition, 2013, 52, 7213-7218.	13.8	128
34	Diametrically Opposed Carbenes on an αâ€Cyclodextrin: Synthesis, Characterization of Organometallic Complexes and Suzuki–Miyaura Coupling in Ethanol and in Water. European Journal of Organic Chemistry, 2013, 2013, 3691-3699.	2.4	40
35	Recent advances on the application of NMR methods to study the conformation and recognition properties of carbohydrates. Carbohydrate Chemistry, 2012, , 192-214.	0.3	4
36	Protein-Carbohydrate Interactions Studied by NMR: From Molecular Recognition to Drug Design. Current Protein and Peptide Science, 2012, 13, 816-830.	1.4	107

#	Article	IF	Citations
37	Structure–Activity Relationship Study of Opiorphin, a Human Dual Ectopeptidase Inhibitor with Antinociceptive Properties. Journal of Medicinal Chemistry, 2012, 55, 1181-1188.	6.4	14
38	Synthesis and conformational analysis of bicyclic mimics of \hat{l}_{\pm} - and \hat{l}_{\pm} -d-glucopyranosides adopting the biologically relevant 2,5B conformation. Carbohydrate Research, 2012, 361, 219-224.	2.3	4
39	\hat{l} ±-N-Linked glycopeptides: conformational analysis and bioactivity as lectin ligands. Organic and Biomolecular Chemistry, 2012, 10, 5916.	2.8	10
40	The Interaction of Saccharides with Antibodies. A 3D View by Using NMR., 2012,, 385-402.		3
41	Rational design of a Tn antigen mimic. Chemical Communications, 2011, 47, 5319.	4.1	24
42	Synthesis, biological evaluation and structural characterization of novel glycopeptide analogues of nociceptin N/OFQ. Organic and Biomolecular Chemistry, 2011, 9, 6133.	2.8	13
43	Fructoseâ€Based Proline Analogues: Exploring the Prolyl <i>trans</i> /i>/ <i>cis</i> ?a€Amide Rotamer Population in Model Peptides. European Journal of Organic Chemistry, 2011, 2011, 128-136.	2.4	8
44	Carbohydrate Recognition at the Minorâ€Groove of the Selfâ€Complementary Duplex d(CGCGAATTCGCG) 2 by a Synthetic Glycoâ€oligoamide. Chemistry - A European Journal, 2011, 17, 4561-4570.	3.3	10
45	Engineering <i>O</i> àê€Glycosylation Points in Nonâ€extended Peptides: Implications for the Molecular Recognition of Short Tumorâ€Associated Glycopeptides. Chemistry - A European Journal, 2011, 17, 3105-3110.	3.3	19
46	Direct Experimental Evidence for the High Chemical Reactivity of α―and βâ€Xylopyranosides Adopting a ^{2,5} <i>B</i> Conformation in Glycosyl Transfer. Chemistry - A European Journal, 2011, 17, 7345-7356.	3.3	14
47	Synthesis, Conformational Analysis, and Evaluation as Glycosidase Inhibitors of Two Ether-Bridged Iminosugars. Journal of Carbohydrate Chemistry, 2011, 30, 641-654.	1.1	14
48	Total Synthesis of the Epimer at C-6′ of the Miharamycin B Framework. Synlett, 2009, 2009, 1269-1272.	1.8	2
49	Synthesis of novel purine nucleosides towards a selective inhibition of human butyrylcholinesterase. Bioorganic and Medicinal Chemistry, 2009, 17, 5106-5116.	3.0	30
50	Design and synthesis of acetamido tri- and tetra-hydroxyazepanes: Potent and selective β-N-acetylhexosaminidase inhibitors. Bioorganic and Medicinal Chemistry, 2009, 17, 5598-5604.	3.0	44
51	Molecular Basis for Inhibition of GH84 Glycoside Hydrolases by Substituted Azepanes: Conformational Flexibility Enables Probing of Substrate Distortion. Journal of the American Chemical Society, 2009, 131, 5390-5392.	13.7	62
52	Stereochemical Assignment and First Synthesis of the Core of Miharamycin Antibiotics. Chemistry - A European Journal, 2008, 14, 10066-10073.	3.3	32
53	Functional food oil coloured by pigments extracted from microalgae with supercritical CO2. Food Chemistry, 2007, 101, 717-723.	8.2	102
54	Supercritical carbon dioxide extraction of astaxanthin and other carotenoids from the microalga Haematococcus pluvialis. European Food Research and Technology, 2006, 223, 787-790.	3.3	151