Luciano M Lião

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2387390/publications.pdf

Version: 2024-02-01

170 papers 3,599 citations

172457 29 h-index 50 g-index

173 all docs

173 docs citations

173 times ranked

5272 citing authors

#	Article	IF	Citations
1	Adsorption of organic acids from offshore produced water using microporous activated carbon from babassu pericarp: a low-cost alternative. Chemical Engineering Communications, 2023, 210, 314-329.	2.6	2
2	Anxiolytic- and antidepressant-like effects of new phenylpiperazine derivative LQFM005 and its hydroxylated metabolite in mice. Behavioural Brain Research, 2022, 417, 113582.	2.2	3
3	Predicting chemical shelf life of mozzarella cheese submitted to irregular refrigeration practices by Nuclear Magnetic Resonance spectroscopy and statistical analysis. Journal of Food Composition and Analysis, 2022, 105, 104229.	3.9	5
4	Neuropharmacological Activity of the New Piperazine Derivative 2-(4-((1-) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 6 Pathways. CNS and Neurological Disorders - Drug Targets, 2022, 21, 520-532.	527 Td (Ph 1.4	nenyl-1H-Pyraz 1
5	Electrochemical determination of carbendazim in grapes and their derivatives by an ionic liquid-modified carbon paste electrode. Journal of Applied Electrochemistry, 2022, 52, 729-742.	2.9	10
6	Sulfonated carbons from agro-industrial residues: simple and efficient catalysts for the Biginelli reaction. New Journal of Chemistry, 2022, 46, 6091-6102.	2.8	6
7	Simultaneous extraction of sunflower oil and active compounds from olive leaves using pressurized propane. Current Research in Food Science, 2022, 5, 531-544.	5.8	10
8	Structure–activity relationship of three new piperazine derivates with anxiolytic-like and antidepressant-like effects. Canadian Journal of Physiology and Pharmacology, 2022, 100, 521-533.	1.4	3
9	1H NMR as a simple methodology for differentiating barn and free-range chicken eggs. Food Chemistry, 2022, 396, 133720.	8.2	5
10	Membrane interactions of the anuran antimicrobial peptide HSP1-NH2: Different aspects of the association to anionic and zwitterionic biomimetic systems. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183449.	2.6	3
11	Synthesis, characterization and crystal structure of racemic vanadyl and uranyl salen-type complexes. Journal of Molecular Structure, 2021, 1228, 129656.	3.6	6
12	LQFM184: A Novel Wide Ultraviolet Radiation Range Absorber Compound. Photochemistry and Photobiology, 2021, 97, 360-371.	2.5	1
13	Application Potential and Technological Properties of Colored Sweet Potato Starches. Starch/Staerke, 2021, 73, .	2.1	7
14	Structural characterisation of natural products by means of quantum chemical calculations of NMR parameters: new insights. Organic Chemistry Frontiers, 2021, 8, 2019-2058.	4.5	45
15	<i>meso</i> -Tetra-(4-pyridyl)porphyrin/palladium(<scp>ii</scp>) complexes as anticancer agents. Dalton Transactions, 2021, 50, 16254-16264.	3.3	0
16	Amine/Carboxylic Acid Ionic Liquid Composite Membranes for CO ₂ Separation. Industrial & Lamp; Engineering Chemistry Research, 2021, 60, 4405-4419.	3.7	7
17	Production of blends of edible oil and carrot carotenoids using compressed propane: Enhancement of stability and nutritional characteristics. Journal of Supercritical Fluids, 2021, 171, 105189.	3.2	6
18	Starch Modified by Natural Fermentation in Orangeâ€Fleshed Sweet Potato. Starch/Staerke, 2021, 73, 2100004.	2.1	2

#	Article	IF	Citations
19	Comparison of Conventional and Microwave Synthesis of Phenyl-1H-pyrazoles and Phenyl-1H-pyrazoles-4-carboxylic Acid Derivatives. Current Organic Synthesis, 2021, 18, 844-853.	1.3	0
20	NMR spectroscopy of wastewater: A review, case study, and future potential. Progress in Nuclear Magnetic Resonance Spectroscopy, 2021, 126-127, 121-180.	7.5	18
21	Analysis of thermal degradation of Brazilian palm oil by quantitative 1H NMR and chemometrics. Food Control, 2021, 130, 108406.	5.5	5
22	Evaluation of Lipoxygenase Activity in Common Beans by UV and NMR Spectroscopy: Proposal for a Complementary Technique for Enzymatic Studies. Food Analytical Methods, 2020, 13, 35-43.	2.6	5
23	Synthesis of Al-rich Beta zeolite through surface response design. Particulate Science and Technology, 2020, 38, 854-862.	2.1	0
24	Physicochemical, structural, and thermal properties of "batata-de-teiú―starch. International Journal of Biological Macromolecules, 2020, 145, 332-340.	7.5	11
25	Repurposing a peptide toxin from wasp venom into antiinfectives with dual antimicrobial and immunomodulatory properties. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26936-26945.	7.1	48
26	Anti-inflammatory and antinociceptive activity profile of a new lead compound – LQFM219. International Immunopharmacology, 2020, 88, 106893.	3.8	4
27	Efficient Chemical Synthesis of (Epi)catechin Glucuronides: Brain-Targeted Metabolites for Treatment of Alzheimer's Disease and Other Neurological Disorders. ACS Omega, 2020, 5, 30095-30110.	3.5	5
28	Neuropharmacological assessment in mice and molecular docking of piperazine derivative LQFM212. Behavioural Brain Research, 2020, 394, 112827.	2.2	3
29	Investigation of anti-inflammatory potential of 5-(3,5-di-tert-butyl-4-hydroxybenzylidene)-2-thioxodihydropyrimidine-4,6(1H,5H)-dione compound. European Journal of Pharmacology, 2020, 886, 173388.	3.5	4
30	NMR Approach for Monitoring Caranha Fish Meat Alterations due to the Freezing-Thawing Cycles. Food Analytical Methods, 2020, 13, 2330-2340.	2.6	8
31	Structural comparison of five new halogenated dihydroquinoline-4(1H)-ones. Journal of Molecular Structure, 2020, 1219, 128559.	3.6	2
32	Antileishmanial activity of the chalcone derivative LQFM064 associated with reduced fluidity in the parasite membrane as assessed by EPR spectroscopy. European Journal of Pharmaceutical Sciences, 2020, 151, 105407.	4.0	17
33	Antiangiogenic and antitumoral activity of LQFM126 prototype against B16F10 melanoma cells. Chemico-Biological Interactions, 2020, 325, 109127.	4.0	2
34	Design, synthesis and pharmacological assessment of new pyrazole compounds. Inflammopharmacology, 2020, 28, 915-928.	3.9	2
35	Nb ₂ O ₅ supported catalysts for cross-coupling reactions. Journal of Coordination Chemistry, 2020, 73, 1516-1529.	2.2	0
36	Nose-to-brain drug delivery mediated by polymeric nanoparticles: influence of PEG surface coating. Drug Delivery and Translational Research, 2020, 10, 1688-1699.	5.8	26

#	Article	IF	Citations
37	Mechanisms involved in the antinociceptive and anti-inflammatory effects of a new triazole derivative: 5-[1-(4-fluorophenyl)-1H-1,2,3-triazol-4-yl]-1H-tetrazole (LQFM-096). Inflammopharmacology, 2020, 28, 877-892.	3.9	20
38	High-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) as a tool in the determination of biomarkers of Passiflora-based herbal medicines. Fìtoterapì¢, 2020, 142, 104500.	2.2	7
39	Smallâ€molecule MDM2 inhibitor LQFM030â€induced apoptosis in p53â€null K562 chronic myeloid leukemia cells. Fundamental and Clinical Pharmacology, 2020, 34, 444-457.	1.9	5
40	Effect of water on high-pressure ternary phase equilibria of CO2Â+ÂH2OÂ+Âalkanolamine based ionic liquid. Journal of Molecular Liquids, 2020, 306, 112775.	4.9	10
41	Sorghum starch as depressant in mineral flotation: part 1 $\hat{a} \in \text{``extraction and characterization. Journal of Materials Research and Technology, 2019, 8, 396-402.}$	5.8	17
42	Important issues in plant tissues analyses by HRâ€MAS NMR. Phytochemical Analysis, 2019, 30, 5-13.	2.4	15
43	Fast and potent bactericidal membrane lytic activity of PaDBS1R1, a novel cationic antimicrobial peptide. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 178-190.	2.6	32
44	Structure elucidation of a bioactive fucomannogalactan from the edible mushroom Hypsizygus marmoreus. Carbohydrate Polymers, 2019, 225, 115203.	10.2	33
45	Effect of broiler breast abnormality and freezing on meat quality and metabolites assessed by 1 H-NMR spectroscopy. Poultry Science, 2019, 98, 7139-7150.	3.4	35
46	Metabolic response of soybean plants to Sclerotinia sclerotiorum infection. Phytochemistry, 2019, 167, 112099.	2.9	11
47	Antimicrobial alumina nanobiostructures of disulfide- and triazole-linked peptides: Synthesis, characterization, membrane interactions and biological activity. Colloids and Surfaces B: Biointerfaces, 2019, 177, 94-104.	5.0	17
48	Extraction, characterization and technological properties of white garland-lily starch. International Journal of Biological Macromolecules, 2019, 135, 422-428.	7.5	25
49	Antinociceptive effects of new pyrazoles compounds mediated by the ASIC-1 \hat{l} ± channel, TRPV-1 and \hat{l} 4MOR receptors. Biomedicine and Pharmacotherapy, 2019, 115, 108915.	5.6	7
50	Novel choline analog 2-(4-((1-phenyl-1H-pyrazol-4-yl)methyl)piperazin-1-yl)ethan-1-ol produces sympathoinhibition, hypotension, and antihypertensive effects. Naunyn-Schmiedeberg's Archives of Pharmacology, 2019, 392, 1071-1083.	3.0	2
51	Ruthenium-cymene containing pyridine-derived aldiimine ligands: Synthesis, characterization and application in the transfer hydrogenation of aryl ketones and kinetics studies. Journal of Organometallic Chemistry, 2019, 892, 51-65.	1.8	12
52	Selective antibacterial activity of the cationic peptide PaDBS1R6 against Gram-negative bacteria. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 1375-1387.	2.6	38
53	Glycerol dehydration over micro- and mesoporous ZSM-5 synthesized from a one-step method. Microporous and Mesoporous Materials, 2019, 275, 244-252.	4.4	29
54	\hat{l}^2 -Cyclodextrin complexation of extracts of olive leaves obtained by pressurized liquid extraction. Industrial Crops and Products, 2019, 129, 662-672.	5.2	22

#	Article	IF	Citations
55	Electrochemical characterizations of darbufelone, a di-tert-butylphenol derivative, by voltammetric techniques and density functional theory calculations. Electrochimica Acta, 2018, 268, 462-468.	5.2	8
56	In silico optimization of a guava antimicrobial peptide enables combinatorial exploration for peptide design. Nature Communications, 2018, 9, 1490.	12.8	179
57	Qualitative and quantitative control of pediatric syrups using Nuclear Magnetic Resonance and chemometrics. Journal of Pharmaceutical and Biomedical Analysis, 2018, 153, 29-36.	2.8	9
58	Chemical structure of a partially 3-O-methylated mannofucogalactan from edible mushroom Grifola frondosa. Carbohydrate Polymers, 2018, 187, 110-117.	10.2	18
59	Partially methylated galactans containing different proportions of 3-O-methyl-galactose from Pleurotus citrinopileatus. Carbohydrate Research, 2018, 458-459, 29-34.	2.3	12
60	A new piperazine derivative: 1-(4-(3,5-di-tert-butyl-4-hydroxybenzyl) piperazin-1-yl)-2-methoxyethan-1-one with antioxidant and central activity. Naunyn-Schmiedeberg's Archives of Pharmacology, 2018, 391, 255-269.	3.0	9
61	High pressure vapor-liquid equilibria for binary carbon dioxide and protic ionic liquid based on ethanolaminesÂ+ butanoic acid. Fluid Phase Equilibria, 2018, 460, 162-174.	2.5	9
62	NMR structures in different membrane environments of three ocellatin peptides isolated from Leptodactylus labyrinthicus. Peptides, 2018, 103, 72-83.	2.4	14
63	Mixed diphosphine/diamine ruthenium (II) isomers: Synthesis, structural characterization and catalytic hydrogenation of ketones. Journal of Molecular Structure, 2018, 1151, 277-285.	3.6	5
64	Anti-inflammatory effect of a new piperazine derivative: (4-methylpiperazin-1-yl)(1-phenyl-1H-pyrazol-4-yl)methanone. Inflammopharmacology, 2018, 26, 217-226.	3.9	16
65	High pressure vapor-liquid equilibria for binary protic ionic liquids + methane or carbon dioxide. Separation and Purification Technology, 2018, 196, 32-40.	7.9	14
66	Low viscosity protic ionic liquid for CO 2 /CH 4 separation: Thermophysical and high-pressure phase equilibria for diethylammonium butanoate. Fluid Phase Equilibria, 2018, 459, 30-43.	2.5	29
67	A structural perspective of plant antimicrobial peptides. Biochemical Journal, 2018, 475, 3359-3375.	3.7	23
68	Tert-butyl 4-((1-phenyl-1H-pyrazol-4-yl) methyl) piperazine-1-carboxylate (LQFM104)– New piperazine derivative with antianxiety and antidepressant-like effects: Putative role of serotonergic system. Biomedicine and Pharmacotherapy, 2018, 103, 546-552.	5.6	18
69	Molecular docking and pharmacological/toxicological assessment of a new compound designed from celecoxib and paracetamol by molecular hybridization. Inflammopharmacology, 2018, 26, 1189-1206.	3.9	11
70	Toxico-pharmacological evaluations of the small-molecule LQFM166: Inducer of apoptosis and MDM2 antagonist. Chemico-Biological Interactions, 2018, 293, 20-27.	4.0	2
71	Synthesis, Characterization and Evaluation of in vitro Antitumor Activities of Novel Chalcone-Quinolinone Hybrid Compounds. Journal of the Brazilian Chemical Society, 2018, , .	0.6	10
72	The novel piperazine-containing compound LQFM018: Necroptosis cell death mechanisms, dopamine D4 receptor binding and toxicological assessment. Biomedicine and Pharmacotherapy, 2018, 102, 481-493.	5 . 6	12

#	Article	IF	CITATIONS
73	The Newly Synthesized Pyrazole Derivative 5-(1-(3 Fluorophenyl)-1H-Pyrazol-4-yl)-2H-Tetrazole Reduces Blood Pressure of Spontaneously Hypertensive Rats via NO/cGMO Pathway. Frontiers in Physiology, 2018, 9, 1073.	2.8	13
74	Inhibition of Leishmania amazonensis arginase by fucogalactan isolated from Agrocybe aegerita mushroom. Carbohydrate Polymers, 2018, 201, 532-538.	10.2	12
75	A Novel Polymer-Lipid Hybrid Nanoparticle for the Improvement of Topotecan Hydrochloride Physicochemical Properties. Current Drug Delivery, 2018, 15, 979-986.	1.6	4
76	Formation of inclusion compounds of (+)catechin with \hat{l}^2 -cyclodextrin in different complexation media: Spectral, thermal and antioxidant properties. Journal of Supercritical Fluids, 2017, 121, 10-18.	3.2	19
77	NMR-based metabolomics of transgenic and non-transgenic sweet orange reveals different responses in primary metabolism during citrus canker development. Metabolomics, 2017, 13, 1.	3.0	14
78	Chromatographic characterization of the crambe (Crambe abyssinica Hochst) oil and modeling of some parameters for its conversion in biodiesel. Industrial Crops and Products, 2017, 97, 545-551.	5. 2	19
79	25I-NBOH: a new potent serotonin 5-HT2A receptor agonist identified in blotter paper seizures in Brazil. Forensic Toxicology, 2017, 35, 408-414.	2.4	38
80	Anxiolyticâ€like effect of 2â€(4â€((1â€phenylâ€1 <i>H</i> â€pyrazolâ€4â€yl)methyl)piperazinâ€1â€yl)ethanâ€1â€through the benzodiazepine and nicotinic pathways. Chemical Biology and Drug Design, 2017, 90, 432-442.	€ol is med 3.2	liated 10
81	NMR structures and molecular dynamics simulation of hylinâ€a1 peptide analogs interacting with micelles. Journal of Peptide Science, 2017, 23, 421-430.	1.4	3
82	Potential anti-inflammatory effect of LQFM-021 in carrageenan-induced inflammation: The role of nitric oxide. Nitric Oxide - Biology and Chemistry, 2017, 69, 35-44.	2.7	26
83	A novel chalcone derivative, LQFM064, induces breast cancer cells death via p53, p21, KIT and PDGFRA. European Journal of Pharmaceutical Sciences, 2017, 107, 1-15.	4.0	16
84	Improved production of quinone-methide triterpenoids by Cheiloclinium cognatum root cultures: possibilities for a non-destructive biotechnological process. Plant Cell, Tissue and Organ Culture, 2017, 128, 705-714.	2.3	4
85	Pharmacological evaluation and molecular docking of new di-tert-butylphenol compound, LQFM-091, a new dual 5-LOX/COX inhibitor. European Journal of Pharmaceutical Sciences, 2017, 106, 231-243.	4.0	9
86	New pyrazole derivative 5â€[1â€(4â€fluorophenyl)â€1Hâ€pyrazolâ€4â€yl]â€2Hâ€tetrazole: synthesis and assess some biological activities. Chemical Biology and Drug Design, 2017, 89, 124-135.	ment of	16
87	Phytochemical Analysis and Antimicrobial Activity of Myrcia tomentosa (Aubl.) DC. Leaves. Molecules, 2017, 22, 1100.	3.8	31
88	Isolation and Structural Characterization of Two New Furanoditerpenes from Pterodon emarginatus (Fabaceae). Journal of the Brazilian Chemical Society, 2017, , .	0.6	3
89	Decomposition Dynamics of Typha angustifoliaunder Aerobic Conditions. Journal of the Brazilian Chemical Society, 2016, , .	0.6	0
90	HR-MAS NMR for Rapid Identification of Illicit Substances in Tablets and Blotter Papers Seized by Police Department. Journal of the Brazilian Chemical Society, $2016, , .$	0.6	2

#	Article	IF	CITATIONS
91	Investigation of the rheological properties of protic ionic liquids. Journal of Physical Organic Chemistry, 2016, 29, 604-612.	1.9	31
92	Production of microparticles of PHBV polymer impregnated with progesterone by supercritical fluid technology. Canadian Journal of Chemical Engineering, 2016, 94, 1336-1341.	1.7	17
93	A polyalanine peptide derived from polar fish with anti-infectious activities. Scientific Reports, 2016, 6, 21385.	3.3	46
94	One step N -glycosylation by filamentous fungi biofilm in bioreactor of a new phosphodiesterase-3 inhibitor tetrazole. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 3177-3181.	2.2	7
95	Use of 1H NMR and chemometrics to detect additives present in the Brazilian commercial gasoline. Fuel, 2016, 182, 27-33.	6.4	21
96	Photoprotective effect and acute oral systemic toxicity evaluation of the novel heterocyclic compound LQFM048. Journal of Photochemistry and Photobiology B: Biology, 2016, 161, 50-58.	3.8	3
97	Textile cotton dust waste: partial diethylaminoethylation and its application to the sorption/removal of the model residual textile dye Reactive Red 239. Polymer Bulletin, 2016, 73, 3401-3420.	3.3	6
98	High pressure vapor-liquid equilibria for binary methane and protic ionic liquid based on propionate anions. Fluid Phase Equilibria, 2016, 426, 65-74.	2.5	17
99	A single-step O-glycosylation of azidothymidine in bioreactor catalysed by filamentous fungi. Tetrahedron Letters, 2016, 57, 4392-4394.	1.4	2
100	Pharmacological and toxicological evaluations of the new pyrazole compound (LQFM-021) as potential analgesic and anti-inflammatory agents. Inflammopharmacology, 2016, 24, 265-275.	3.9	12
101	Induction of apoptosis in Ehrlich ascites tumour cells via p53 activation by a novel small-molecule MDM2 inhibitor – LQFM030. Journal of Pharmacy and Pharmacology, 2016, 68, 1143-1159.	2.4	7
102	Design, synthesis and pharmacological evaluation of new anti-inflammatory compounds. European Journal of Pharmacology, 2016, 791, 195-204.	3.5	14
103	Structural Studies of a Lipid-Binding Peptide from Tunicate Hemocytes with Anti-Biofilm Activity. Scientific Reports, 2016, 6, 27128.	3.3	24
104	Optimization of carboxymethyl chitosan synthesis using response surface methodology and desirability function. International Journal of Biological Macromolecules, 2016, 85, 615-624.	7.5	163
105	Boiling point elevation of aqueous solutions of ionic liquids derived from diethanolamine base and carboxylic acids. Journal of Chemical Thermodynamics, 2016, 98, 1-8.	2.0	9
106	Catalytic cracking of crude soybean oil on Beta nanozeolites. Journal of Molecular Catalysis A, 2016, 422, 89-102.	4.8	16
107	Characterization of the Antimicrobial Peptide Penisin, a Class Ia Novel Lantibiotic from Paenibacillus sp. Strain A3. Antimicrobial Agents and Chemotherapy, 2016, 60, 580-591.	3.2	73
108	Predâ€hERG: A Novel webâ€Accessible Computational Tool for Predicting Cardiac Toxicity. Molecular Informatics, 2015, 34, 698-701.	2.5	159

#	Article	IF	CITATIONS
109	RESSONÃ,NCIA MAGNÉTICA NUCLEAR DE SUBSTÃ,NCIAS ORGANOFLUORADAS: UM DESAFIO NO ENSINO DE ESPECTROSCOPIA. Quimica Nova, 2015, , .	0.3	1
110	High-resolution magic angle spinning nuclear magnetic resonance in foodstuff analysis. TrAC - Trends in Analytical Chemistry, 2015, 73, 10-18.	11.4	44
111	Investigation of protonation effects on the electronic and structural properties of halogenated sulfonated porphyrins. Journal of Molecular Structure, 2015, 1084, 284-293.	3.6	11
112	Structural insights into <i>Cn</i> â€AMP1, a short disulfideâ€free multifunctional peptide from green coconut water. FEBS Letters, 2015, 589, 639-644.	2.8	16
113	Unveiling chemical defense in the rice stalk stink bug against the entomopathogenic fungus Metarhizium anisopliae. Journal of Invertebrate Pathology, 2015, 127, 93-100.	3.2	30
114	Involvement of the NO/cGMP/KATP pathway in the antinociceptive effect of the new pyrazole 5-(1-(3-fluorophenyl)-1H-pyrazol-4-yl)-2H-tetrazole (LQFM-021). Nitric Oxide - Biology and Chemistry, 2015, 47, 17-24.	2.7	35
115	Micelle Bound Structure and Model Membrane Interaction Studies of the Peptide Hylin a1 from the Arboreal South American Frog <i>Hypsiboas albopunctatus</i> . Protein and Peptide Letters, 2015, 22, 719-726.	0.9	7
116	Rheological and biochemical properties of Solanum lycocarpum starch. Carbohydrate Polymers, 2014, 104, 66-72.	10.2	14
117	Antioxidant potential and vasodilatory activity of fermented beverages of jabuticaba berry (Myrciaria) Tj ETQq1 1	0,7,84314	rgBT /Overl
118	HRâ€MAS NMR metabolomics of â€~Swingle' citrumelo rootstock genetically modified to overproduce proline. Magnetic Resonance in Chemistry, 2014, 52, 422-429.	1.9	13
119	Partially carboxymethylated cotton dust waste for sorption of textile wastewater coloured with the cationic dye Basic Blue 41 as a model: synthesis, regeneration and biodegradability. Cellulose, 2014, 21, 3041-3053.	4.9	3
120	Vasorelaxant activity of $7-\hat{l}^2$ -O-glycosides biosynthesized from flavonoids. European Journal of Pharmacology, 2014, 733, 75-80.	3.5	13
121	Evaluation of transformer insulating oil quality using NIR, fluorescence, and NMR spectroscopic data fusion. Talanta, 2014, 129, 143-149.	5.5	35
122	Virtual Screening Strategies in Medicinal Chemistry: The State of the Art and Current Challenges. Current Topics in Medicinal Chemistry, 2014, 14, 1899-1912.	2.1	57
123	1H HR-MAS NMR and S180 Cells: Metabolite Assignment and Evaluation of Pulse Sequence. Journal of the Brazilian Chemical Society, 2014, , .	0.6	1
124	Extraction and chemical characterization of starch from S. lycocarpum fruits. Carbohydrate Polymers, 2013, 98, 1304-1310.	10.2	65
125	Biosynthesis and antioxidant activity of 4NRC \hat{l}^2 -glycoside. Tetrahedron Letters, 2013, 54, 6656-6659.	1.4	4
126	Conformational variability in a new terpenoid-like bischalcone: Structure and theoretical studies. Journal of Structural Chemistry, 2013, 54, 1112-1121.	1.0	4

#	Article	IF	CITATIONS
127	Ar-turmerone from Curcuma longa (Zingiberaceae) rhizomes and effects on Sitophilus zeamais (Coleoptera: Curculionidae) and Spodoptera frugiperda (Lepidoptera: Noctuidae). Industrial Crops and Products, 2013, 46, 158-164.	5.2	48
128	Chemoselective and Regiospecific Formylation of 1-Phenyl-1H-pyrazoles Through the Duff Reaction. Synthetic Communications, 2013, 43, 1633-1639.	2.1	18
129	Distinction between a transgenic and a conventional common bean genotype by 1H HR-MAS NMR. Food Chemistry, 2013, 141, 2841-2847.	8.2	28
130	Synthesis, Docking Studies, Pharmacological Activity and Toxicity of a Novel Pyrazole Derivative (LQFM 021)â€"Possible Effects on Phosphodiesterase. Chemical and Pharmaceutical Bulletin, 2013, 61, 524-531.	1.3	18
131	Compatibility of conventional agrochemicals used in rice crops with the entomopathogenic fungus Metarhizium anisopliae. Scientia Agricola, 2013, 70, 152-160.	1.2	43
132	Design, Synthesis, Antinociceptive and Anti-Inflammatory Activities of Novel Piroxicam Analogues. Molecules, 2012, 17, 14126-14145.	3.8	20
133	The use of dyed bacterial cellulose to monitor cellulase complex activity. Cellulose, 2012, 19, 1867-1877.	4.9	11
134	Discrimination of biodiesel blends with 1H NMR spectroscopy and principal component analyses. Fuel, 2012, 99, 40-44.	6.4	26
135	Phase Behavior at High Pressure of the Ternary System: <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml< td=""><td>0<td>extz</td></td></mml<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:math>	0 <td>extz</td>	extz
136	Discrimination of sugarcane according to cultivar by \hat{A}^1H NMR and chemometric analyses. Journal of the Brazilian Chemical Society, 2012, 23, 273-279.	0.6	6
137	Microbial \hat{l}^2 -glycosylation of entacapone by Cunninghamella echinulata ATCC 9245. Journal of Bioscience and Bioengineering, 2012, 113, 611-613.	2.2	8
138	Pd/Nb2O5: efficient supported palladium heterogeneous catalyst in the production of key intermediates for the synthesis of â€~sartans' via the Suzuki reaction. Tetrahedron Letters, 2012, 53, 1089-1093.	1.4	16
139	Absolute configuration of strictosidinic acid. Acta Crystallographica Section C: Crystal Structure Communications, 2012, 68, m94-m96.	0.4	О
140	1H HRMAS NMR spectroscopy and chemometrics for evaluation of metabolic changes in citrus sinensis Caused by Xanthomonas axonopodis pv. citri. Journal of the Brazilian Chemical Society, 2012, 23, 1054-1061.	0.6	26
141	Quantification of Oligosaccharides from Common Beans by HR-MAS NMR. Special Publication - Royal Society of Chemistry, 2011, , 47-53.	0.0	2
142	Phase Equilibrium Measurements of Sacha Inchi Oil (<i>Plukenetia volubilis</i>) and CO ₂ at High Pressures. JAOCS, Journal of the American Oil Chemists' Society, 2011, 88, 1263-1269.	1.9	39
143	Complete assignment of NMR data of 22 phenylâ€1 <i>H</i> â€pyrazoles' derivatives. Magnetic Resonance in Chemistry, 2011, 49, 537-542.	1.9	4

Dependence of the product on the Pâ \in "P ligand in reactions of [RuCl3(NO)(Pâ \in "P)] complexes (Pâ \in "P =) Tj ETQq0.0.0 rgBT $\stackrel{!}{\Omega}$ Verlock 1

144

#	Article	IF	CITATIONS
145	Structure-based prediction and biosynthesis of the major mammalian metabolite of the cardioactive prototype LASSBio-294. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 3734-3736.	2.2	14
146	Chemotaxonomic significance of flavonoids, coumarins and triterpenes of Augusta longifolia (Spreng.) Rehder, Rubiaceae-Ixoroideae, with new insights about its systematic position within the family. Revista Brasileira De Farmacognosia, 2010, 20, 295-299.	1.4	7
147	Perfil quÃmico de cultivares de feijão (phaseolus vulgaris) pela técnica de high resolution magic angle spinning (HR-MAS). Quimica Nova, 2010, 33, 634-638.	0.3	6
148	¹ H NMR and Multivariate Calibration for the Prediction of Biodiesel Concentration in Diesel Blends. JAOCS, Journal of the American Oil Chemists' Society, 2009, 86, 581-585.	1.9	25
149	Determination of biodiesel blend levels in different diesel samples by 1H NMR. Fuel, 2009, 88, 691-696.	6.4	129
150	Evaluation of biodiesel–diesel blends quality using 1H NMR and chemometrics. Talanta, 2009, 78, 660-664.	5.5	82
151	Study of Brazilian Gasoline Quality Using Hydrogen Nuclear Magnetic Resonance (¹ H NMR) Spectroscopy and Chemometrics. Energy & Fuels, 2009, 23, 272-279.	5.1	38
152	A tetrahydro \hat{l}^2 -carboline trisaccharide from Palicourea coriacea (Cham.) K. Schum. Carbohydrate Research, 2008, 343, 1104-1107.	2.3	11
153	Synthesis, spectral studies and X-ray crystal structure of N,Nâ \in 2-(Â \pm)-trans-1,2-cyclohexylenebis(3-ethoxysalicylideneamine) H2(t-3-EtOsalchxn). Journal of Molecular Structure, 2008, 876, 110-120.	3.6	37
154	Critical review on analytical methods for biodiesel characterization. Talanta, 2008, 77, 593-605.	5.5	264
155	Trypanocidal Activity of Quinonemethide Triterpenoids from Cheiloclinium cognatum (Hippocrateaceae). Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2008, 63, 207-210.	1.4	19
156	Analgesic and anti-inflammatory effects of Cheiloclinium cognatum root barks. Revista Brasileira De Farmacognosia, 2007, 17, 508-513.	1.4	7
157	Alkaloids from Palicourea coriacea (Cham.) K. Schum Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2006, 61, 1443-1446.	0.7	14
158	Antioxidant phenolic and quinonemethide triterpenes from Cheiloclinium cognatum. Phytochemistry, 2004, 65, 1977-1982.	2.9	45
159	SESQUITERPENE PYRIDINE ALKALOIDS. The Alkaloids Chemistry and Biology, 2003, 60, 287-343.	2.0	10
160	SÃntese do isobutileno e seu emprego em reações de esterificação: propostas de aulas práticas de quÃmica orgânica para a graduação. Quimica Nova, 2003, 26, 425-427.	0.3	5
161	Isomeric Triterpenoids From Peritassa Campestris. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2002, 57, 403-406.	1.4	7
162	Antifungal properties of Brazilian cerrado plants. Brazilian Journal of Microbiology, 2002, 33, 247.	2.0	45

#	Article	lF	CITATIONS
163	Sesquiterpene pyridine alkaloids from Peritassa campestris. Phytochemistry, 2001, 58, 1205-1207.	2.9	18
164	Growth Inhibition Effect of Brazilian Cerrado Plant Extracts on Candida Species. Pharmaceutical Biology, 2001, 39, 138-141.	2.9	22
165	Antifungal activity of volatile constituents of Eugenia dysenterica leaf oil. Journal of Ethnopharmacology, 2000, 72, 111-117.	4.1	161
166	Conformational Analysis, Experimental and GIAO-DFT 13C NMR Chemical Shift Calculation on $2\hat{a}\in^{\text{TM}}$ -Hydroxy-3,4,5-trimethoxy-chalcone. Journal of the Brazilian Chemical Society, 0, , .	0.6	2
167	HR-MAS NMR Allied to Chemometric on Hancornia speciosa Varieties Differentiation. Journal of the Brazilian Chemical Society, 0, , .	0.6	5
168	Synthesis and Optimization of Colloidal Hydroxyapatite Nanoparticles by Hydrothermal Processes. Journal of the Brazilian Chemical Society, $0, \dots$	0.6	3
169	Evaluation of the Metabolic Profile of Arabica Coffee via NMR in Relation to the Time and Temperature of the Roasting Procedure. Journal of the Brazilian Chemical Society, 0, , .	0.6	0
170	1H NMR and Chemometric Methods to Estimate the Octane Number in Brazilian C Gasolines. Journal of the Brazilian Chemical Society, 0, , .	0.6	0