Yanbo Pan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/238682/publications.pdf

Version: 2024-02-01

567281 752698 20 814 15 20 h-index citations g-index papers 20 20 20 1486 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Platinum Alloy Catalysts for Oxygen Reduction Reaction: Advances, Challenges and Perspectives. ChemNanoMat, 2020, 6, 32-41.	2.8	71
2	Oscillation of Work Function during Reducible Metal Oxide Catalysis and Correlation with the Activity Property. ChemCatChem, 2020, 12, 85-89.	3.7	3
3	A vacuum impregnation method for synthesizing octahedral Pt2CuNi nanoparticles on mesoporous carbon support and the oxygen reduction reaction electrocatalytic properties. Journal of Colloid and Interface Science, 2020, 564, 245-253.	9.4	15
4	Designing Champion Nanostructures of Tungsten Dichalcogenides for Electrocatalytic Hydrogen Evolution. Advanced Materials, 2020, 32, e2002584.	21.0	82
5	Unravelling Proximity-Driven Synergetic Effect within CIZO–SAPO Bifunctional Catalyst for CO ₂ Hydrogenation to DME. Energy & DME, Fuels, 2020, 34, 8635-8643.	5.1	25
6	Utilizing hydrogen underpotential deposition in CO reduction for highly selective formaldehyde production under ambient conditions. Green Chemistry, 2020, 22, 5639-5647.	9.0	14
7	Tuning Electronic Structure and Lattice Diffusion Barrier of Ternary Pt–In–Ni for Both Improved Activity and Stability Properties in Oxygen Reduction Electrocatalysis. ACS Catalysis, 2019, 9, 11431-11437.	11.2	36
8	Proximity to Graphene Dramatically Alters Polymer Dynamics. Macromolecules, 2019, 52, 5074-5085.	4.8	11
9	Designing Highly Efficient and Longâ€Term Durable Electrocatalyst for Oxygen Evolution by Coupling B and P into Amorphous Porous NiFeâ€Based Material. Small, 2019, 15, e1901020.	10.0	71
10	Dual-Site Cascade Oxygen Reduction Mechanism on SnO _{<i>x</i>} /Pt–Cu–Ni for Promoting Reaction Kinetics. Journal of the American Chemical Society, 2019, 141, 9463-9467.	13.7	70
11	Competitive Transient Electrostatic Adsorption for In Situ Regeneration of Poisoned Catalyst. ChemCatChem, 2019, 11, 1179-1184.	3.7	3
12	Synthesis of freestanding amorphous giant carbon tubes with outstanding oil sorption and water oxidation properties. Journal of Materials Chemistry A, 2018, 6, 3996-4002.	10.3	19
13	Three-step cascade over a single catalyst: synthesis of 5-(ethoxymethyl)furfural from glucose over a hierarchical lamellar multi-functional zeolite catalyst. Journal of Materials Chemistry A, 2018, 6, 7693-7705.	10.3	43
14	Deconvolution of octahedral Pt3Ni nanoparticle growth pathway from in situ characterizations. Nature Communications, 2018, 9, 4485.	12.8	37
15	Active Sites in Heterogeneous Catalytic Reaction on Metal and Metal Oxide: Theory and Practice. Catalysts, 2018, 8, 478.	3.5	59
16	Computation-Guided Development of Platinum Alloy Catalyst for Carbon Monoxide Preferential Oxidation. ACS Catalysis, 2018, 8, 5777-5786.	11.2	22
17	A review of Pt-based electrocatalysts for oxygen reduction reaction. Frontiers in Energy, 2017, 11, 268-285.	2.3	155
18	More accurate depiction of adsorption energy on transition metals using work function as one additional descriptor. Physical Chemistry Chemical Physics, 2017, 19, 12628-12632.	2.8	44

YANBO PAN

#	Article	IF	CITATION
19	Feedstock molecular reconstruction for secondary reactions of fluid catalytic cracking gasoline by maximum information entropy method. Chemical Engineering Journal, 2015, 281, 945-952.	12.7	20
20	Liquid–liquid equilibrium for systems of glycerol and glycerol tert-butyl ethers. Fluid Phase Equilibria, 2014, 365, 50-57.	2.5	14