Andrés Mauricio Caraballo-Rodriguez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/238674/publications.pdf

Version: 2024-02-01

30 papers 17,489 citations

430874 18 h-index 454955 30 g-index

43 all docs 43 docs citations

43 times ranked

20686 citing authors

#	Article	IF	Citations
1	Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology, 2019, 37, 852-857.	17.5	11,167
2	Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nature Biotechnology, 2016, 34, 828-837.	17.5	2,802
3	Feature-based molecular networking in the GNPS analysis environment. Nature Methods, 2020, 17, 905-908.	19.0	650
4	Reproducible molecular networking of untargeted mass spectrometry data using GNPS. Nature Protocols, 2020, 15, 1954-1991.	12.0	344
5	MolNetEnhancer: Enhanced Molecular Networks by Integrating Metabolome Mining and Annotation Tools. Metabolites, 2019, 9, 144.	2.9	245
6	Propagating annotations of molecular networks using in silico fragmentation. PLoS Computational Biology, 2018, 14, e1006089.	3.2	242
7	Mass spectrometry searches using MASST. Nature Biotechnology, 2020, 38, 23-26.	17.5	160
8	Chemical signaling involved in plant–microbe interactions. Chemical Society Reviews, 2018, 47, 1652-1704.	38.1	149
9	Ion identity molecular networking for mass spectrometry-based metabolomics in the GNPS environment. Nature Communications, 2021, 12, 3832.	12.8	119
10	A Convolutional Neural Network-Based Approach for the Rapid Annotation of Molecularly Diverse Natural Products. Journal of the American Chemical Society, 2020, 142, 4114-4120.	13.7	114
11	The extracellular matrix protects Bacillus subtilis colonies from Pseudomonas invasion and modulates plant co-colonization. Nature Communications, 2019, 10, 1919.	12.8	102
12	Natural products as mediators of disease. Natural Product Reports, 2017, 34, 194-219.	10.3	59
13	Untargeted mass spectrometry-based metabolomics approach unveils molecular changes in raw and processed foods and beverages. Food Chemistry, 2020, 302, 125290.	8.2	52
14	Endophytic Actinobacteria from the Brazilian Medicinal Plant <i>Lychnophora ericoides </i> <scp>Mart</scp> . and the Biological Potential of Their Secondary Metabolites. Chemistry and Biodiversity, 2016, 13, 727-736.	2.1	39
15	Integrating genomics and metabolomics for scalable non-ribosomal peptide discovery. Nature Communications, 2021, 12, 3225.	12.8	31
16	Chemical interplay and complementary adaptative strategies toggle bacterial antagonism and co-existence. Cell Reports, 2021, 36, 109449.	6.4	28
17	Wildlife-microbiome interactions and disease: exploring opportunities for disease mitigation across ecological scales. Drug Discovery Today: Disease Models, 2018, 28, 105-115.	1.2	25
18	Virulence as a Side Effect of Interspecies Interaction in <i>Vibrio</i> Coral Pathogens. MBio, 2020, 11, .	4.1	23

#	Article	IF	CITATIONS
19	Chemical Proportionality within Molecular Networks. Analytical Chemistry, 2021, 93, 12833-12839.	6.5	22
20	Molecular inter-kingdom interactions of endophytes isolated from Lychnophora ericoides. Scientific Reports, 2017, 7, 5373.	3.3	19
21	Expanding the Chemical Repertoire of the Endophyte <i>Streptomyces albospinus</i> RLe7 Reveals Amphotericin B as an Inducer of a Fungal Phenotype. Journal of Natural Products, 2017, 80, 1302-1309.	3.0	17
22	Protocol for communityâ€created public MS/MS reference spectra within the Global Natural Products Social Molecular Networking infrastructure. Rapid Communications in Mass Spectrometry, 2020, 34, e8725.	1.5	14
23	Nerpa: A Tool for Discovering Biosynthetic Gene Clusters of Bacterial Nonribosomal Peptides. Metabolites, 2021, 11, 693.	2.9	11
24	Cryptic Species Account for the Seemingly Idiosyncratic Secondary Metabolism of <i>Sarcophyton glaucum </i> Specimens Collected in Palau. Journal of Natural Products, 2020, 83, 693-705.	3.0	10
25	Untargeted Metabolomics Sheds Light on the Diversity of Major Classes of Secondary Metabolites in the Malpighiaceae Botanical Family. Frontiers in Plant Science, 2022, 13, 854842.	3.6	9
26	Amphotericin B as an inducer of griseofulvin-containing guttate in the endophytic fungus Xylaria cubensis FLe9. Chemoecology, 2017, 27, 177-185.	1.1	7
27	Metabolites from Microbes Isolated from the Skin of the Panamanian Rocket Frog Colostethus panamansis (Anura: Dendrobatidae). Metabolites, 2020, 10, 406.	2.9	4
28	The molecular impact of life in an indoor environment. Science Advances, 2022, 8, .	10.3	3
29	Chemical Gradients of Plant Substrates in an <i>Atta texana</i> Fungus Garden. MSystems, 2021, 6, e0060121.	3.8	2
30	Mass Spectrometry–Based Detection of Beta Lactam Hydrolysis Enables Rapid Detection of Beta Lactamase Mediated Antibiotic Resistance. Laboratory Medicine, 2021, , .	1.2	0