
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2386537/publications.pdf Version: 2024-02-01

MIKELUDWIC

#	Article	IF	CITATIONS
1	Dendritic peptide release and peptide-dependent behaviours. Nature Reviews Neuroscience, 2006, 7, 126-136.	4.9	819
2	Intranasal Oxytocin: Myths and Delusions. Biological Psychiatry, 2016, 79, 243-250.	0.7	511
3	Dendritic Release of Vasopressin and Oxytocin. Journal of Neuroendocrinology, 1998, 10, 881-895.	1.2	318
4	Intracellular calcium stores regulate activity-dependent neuropeptide release from dendrites. Nature, 2002, 418, 85-89.	13.7	307
5	Behavioral Consequences of Intracerebral Vasopressin and Oxytocin: Focus on Learning and Memory **This paper is dedicated to our friend and scientific teacher Prof. Dr Armin Ermisch (1935–1995) Neuroscience and Biobehavioral Reviews, 1996, 20, 341-358.	2.9	276
6	Simultaneous Microdialysis in Blood and Brain: Oxytocin and Vasopressin Release in Response to Central and Peripheral Osmotic Stimulation and Suckling in the Rat. Neuroendocrinology, 1993, 58, 637-645.	1.2	219
7	An intrinsic vasopressin system in the olfactory bulb is involved in social recognition. Nature, 2010, 464, 413-417.	13.7	194
8	Talking back: dendritic neurotransmitter release. Trends in Neurosciences, 2003, 26, 255-261.	4.2	192
9	Neurotransmitters and peptides: whispered secrets and public announcements. Journal of Physiology, 2008, 586, 5625-5632.	1.3	155
10	Dendritic Peptide Release Mediates Interpopulation Crosstalk between Neurosecretory and Preautonomic Networks. Neuron, 2013, 78, 1036-1049.	3.8	145
11	Systemic Osmotic Stimulation Increases Vasopressin and Oxytocin Release Within the Supraoptic Nucleus. Journal of Neuroendocrinology, 1994, 6, 369-373.	1.2	139
12	Responses of Magnocellular Neurons to Osmotic Stimulation Involves Coactivation of Excitatory and Inhibitory Input: An Experimental and Theoretical Analysis. Journal of Neuroscience, 2001, 21, 6967-6977.	1.7	139
13	Physiological Regulation of Magnocellular Neurosecretory Cell Activity: Integration of Intrinsic, Local and Afferent Mechanisms. Journal of Neuroendocrinology, 2013, 25, 678-710.	1.2	132
14	Autoinhibition of Supraoptic Nucleus Vasopressin NeuronsIn Vivo:A Combined Retrodialysis/Electrophysiological Study in Rats. European Journal of Neuroscience, 1997, 9, 2532-2540.	1.2	128
15	Vasopressin release within the supraoptic and paraventricular nuclei of the rat brain: osmotic stimulation via microdialysis. Brain Research, 1991, 558, 191-196.	1.1	112
16	NO inhibits supraoptic oxytocin and vasopressin neurons via activation of GABAergic synaptic inputs. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2001, 280, R1815-R1822.	0.9	102
17	Regulation of activity-dependent dendritic vasopressin release from rat supraoptic neurones. Journal of Physiology, 2005, 564, 515-522.	1.3	102
18	Vasopressin, oxytocin, and social odor recognition. Hormones and Behavior, 2012, 61, 259-265.	1.0	102

#	Article	IF	CITATIONS
19	Phasic spike patterning in rat supraoptic neuronesin vivoandin vitro. Journal of Physiology, 2004, 558, 161-180.	1.3	87
20	60 YEARS OF NEUROENDOCRINOLOGY: The posterior pituitary, from Geoffrey Harris to our present understanding. Journal of Endocrinology, 2015, 226, T173-T185.	1.2	81
21	κ-Opioid Regulation of Neuronal Activity in the Rat Supraoptic NucleusIn Vivo. Journal of Neuroscience, 1998, 18, 9480-9488.	1.7	75
22	Amygdala Kisspeptin Neurons: Putative Mediators of Olfactory Control of the Gonadotropic Axis. Neuroendocrinology, 2017, 104, 223-238.	1.2	74
23	Simultaneous Monitoring of Intracerebral Release and Behavior: Endogenous Vasopressin Improves Social Recognition. Journal of Neuroendocrinology, 1994, 6, 391-395.	1.2	70
24	Vasopressin facilitates its own release within the rat supraoptic nucleus in vivo. NeuroReport, 1994, 5, 1181-1184.	0.6	64
25	Nitric Oxide and the Oxytocin System in Pregnancy. Journal of Neuroscience, 2000, 20, 6721-6727.	1.7	62
26	The involvement of actin, calcium channels and exocytosis proteins in somato-dendritic oxytocin and vasopressin release. Frontiers in Physiology, 2012, 3, 261.	1.3	57
27	Vasopressin from hypothalamic magnocellular neurons has opposite actions at the adenohypophysis and in the supraoptic nucleus on ACTH secretion. European Journal of Neuroscience, 2002, 16, 477-485.	1.2	56
28	Multiple signalling modalities mediated by dendritic exocytosis of oxytocin and vasopressin. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140182.	1.8	55
29	Somatoâ€dendritic vasopressin and oxytocin secretion in endocrine and autonomic regulation. Journal of Neuroendocrinology, 2020, 32, e12856.	1.2	51
30	Effects of Tetrodotoxin on Osmotically Stimulated Central and Peripheral Vasopressin and Oxytocin Release. Neuroendocrinology, 1995, 62, 619-627.	1.2	50
31	The Effects of Apelin on the Electrical Activity of Hypothalamic Magnocellular Vasopressin and Oxytocin Neurons and Somatodendritic Peptide Release. Endocrinology, 2008, 149, 6136-6145.	1.4	46
32	Magnocellular Dendrites: Prototypic Receiver/Transmitters. Journal of Neuroendocrinology, 2004, 16, 403-408.	1.2	45
33	Dendritic Release of Neurotransmitters. , 2016, 7, 235-252.		45
34	Does the release of vasopressin within the supraoptic nucleus of the rat brain depend upon changes in osmolality and Ca2+/K+?. Brain Research, 1992, 576, 231-234.	1.1	44
35	Endogenous Activation of Supraoptic Nucleus κ-Opioid Receptors Terminates Spontaneous Phasic Bursts in Rat Magnocellular Neurosecretory Cells. Journal of Neurophysiology, 2006, 95, 3235-3244.	0.9	44
36	Dendritic Transmitter Release: A Comparison of Two Model Systems. Journal of Neuroendocrinology, 2008, 20, 677-686.	1.2	44

#	Article	IF	CITATIONS
37	Vasopressin and social odor processing in the olfactory bulb and anterior olfactory nucleus. Annals of the New York Academy of Sciences, 2011, 1220, 106-116.	1.8	44
38	Thapsigargin-induced mobilization of dendritic dense-cored vesicles in rat supraoptic neurons. European Journal of Neuroscience, 2004, 19, 2909-2912.	1.2	43
39	The multiple faces of the oxytocin and vasopressin systems in the brain. Journal of Neuroendocrinology, 2021, 33, e13004.	1.2	41
40	Temporal dissociation of the feedback effects of dendritically co-released peptides on rhythmogenesis in vasopressin cells. Neuroscience, 2004, 124, 105-111.	1.1	40
41	Vasopressin casts light on the suprachiasmatic nucleus. Journal of Physiology, 2017, 595, 3497-3514.	1.3	38
42	Neurosteroid regulation of oxytocin and vasopressin release from the rat supraoptic nucleus. Journal of Physiology, 2003, 548, 233-244.	1.3	38
43	Local opioid inhibition and morphine dependence of supraoptic nucleus oxytocin neurones in the ratin vivo. Journal of Physiology, 1997, 505, 145-152.	1.3	37
44	Intrahippocampal glucocorticoids generated by 11β-HSD1 affect memory in aged mice. Neurobiology of Aging, 2015, 36, 334-343.	1.5	37
45	The Involvement of Voltage-Operated Calcium Channels in Somato-Dendritic Oxytocin Release. PLoS ONE, 2011, 6, e25366.	1.1	37
46	Information Processing in the Hypothalamus: Peptides and Analogue Computation. Journal of Neuroendocrinology, 2006, 18, 379-392.	1.2	36
47	Somatodendritic dynorphin release: orchestrating activity patterns of vasopressin neurons. Biochemical Society Transactions, 2007, 35, 1236-1242.	1.6	36
48	Direct hypertonic stimulation of the rat supraoptic nucleus increases c-fos expressionin glial cells rather than magnocellular neurones. Cell and Tissue Research, 1996, 287, 79-90.	1.5	35
49	Interruption of central noradrenergic pathways and morphine withdrawal excitation of oxytocin neurones in the rat. Journal of Physiology, 1998, 507, 831-842.	1.3	35
50	Expression of Exocytosis Proteins in Rat Supraoptic Nucleus Neurones. Journal of Neuroendocrinology, 2012, 24, 629-641.	1.2	35
51	The role of the actin cytoskeleton in oxytocin and vasopressin release from rat supraoptic nucleus neurons. Journal of Physiology, 2007, 582, 1337-1348.	1.3	34
52	Intranasal Application of Vasopressin Fails to Elicit Changes in Brain Immediate Early Gene Expression, Neural Activity and Behavioural Performance of Rats. Journal of Neuroendocrinology, 2013, 25, 655-667.	1.2	34
53	The role of vasopressin in olfactory and visual processing. Cell and Tissue Research, 2019, 375, 201-215.	1.5	34
54	Salt loading abolishes osmotically stimulated vasopressin release within the supraoptic nucleus. Neuroscience Letters, 1996, 215, 1-4.	1.0	33

#	Article	IF	CITATIONS
55	Chapter 19 The active role of dendrites in the regulation of magnocellular neurosecretory cell behavior. Progress in Brain Research, 2002, 139, 247-255.	0.9	33
56	Oxytocinase in the Female Rat Hypothalamus: A Novel Mechanism Controlling Oxytocin Neurones During Lactation. Journal of Neuroendocrinology, 2014, 26, 205-216.	1.2	28
57	The Activity of the Hypothalamo-Neurohypophysial System in Response to Acute Stressor Exposure: Neuroendocrine and Electrophysiological Observations. Stress, 2004, 7, 91-96.	0.8	27
58	Taurine selectively modulates the secretory activity of vasopressin neurons in conscious rats. European Journal of Neuroscience, 2001, 14, 1047-1055.	1.2	26
59	GABAergic projection from the arcuate nucleus to the supraoptic nucleus in the rat. Neuroscience Letters, 2000, 281, 195-197.	1.0	25
60	GABA selectively controls the secretory activity of oxytocin neurons in the rat supraoptic nucleus. European Journal of Neuroscience, 2004, 19, 601-608.	1.2	25
61	Multi-factorial somato-dendritic regulation of phasic spike discharge in vasopressin neurons. Progress in Brain Research, 2008, 170, 219-228.	0.9	25
62	Social creatures: Model animal systems for studying the neuroendocrine mechanisms of social behaviour. Journal of Neuroendocrinology, 2019, 31, e12807.	1.2	24
63	Intrahypothalamic Vasopressin Release. Advances in Experimental Medicine and Biology, 1998, , 163-173.	0.8	24
64	Expression of early growth response protein 1 in vasopressin neurones of the rat anterior olfactory nucleus following social odour exposure. Journal of Physiology, 2010, 588, 4705-4717.	1.3	22
65	Discharge patterning in rat olfactory bulb mitral cells in vivo. Physiological Reports, 2014, 2, e12021.	0.7	21
66	Functional role of intrahypothalamic release of oxytocin and vasopressin: consequences and controversies. American Journal of Physiology - Endocrinology and Metabolism, 1995, 268, E537-E545.	1.8	19
67	Activity-dependent feedback modulation of spike patterning of supraoptic nucleus neurons by endogenous adenosine. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2006, 291, R83-R90.	0.9	18
68	Priming in Oxytocin Cells and in Gonadotrophs. Neurochemical Research, 2008, 33, 668-677.	1.6	18
69	A Direct Neurokinin B Projection from the Arcuate Nucleus Regulates Magnocellular Vasopressin Cells of the Supraoptic Nucleus. Journal of Neuroendocrinology, 2016, 28, .	1.2	17
70	Oxytocin—a social peptide? Deconstructing the evidence. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, .	1.8	17
71	Vasopressin Regulation of Noradrenaline Release Within the Supraoptic Nucleus. Journal of Neuroendocrinology, 2001, 12, 477-479.	1.2	16
72	The rat suprachiasmatic nucleus: the master clock ticks at 30ÂHz. Journal of Physiology, 2016, 594, 3629-3650.	1.3	15

#	Article	IF	CITATIONS
73	Baroreceptor Input Regulates Osmotic Control of Central Vasopressin Secretion. Neuroendocrinology, 1997, 65, 238-245.	1.2	14
74	The role of nitric oxide in morphine dependence and withdrawal excitation of rat oxytocin neurons. European Journal of Neuroscience, 2003, 18, 2545-2551.	1.2	13
75	Increased Sensitivity of Monoamine Release in the Supraoptic Nucleus in Late Pregnancy: Region―and Stimulusâ€Dependent Responses. Journal of Neuroendocrinology, 2010, 22, 430-437.	1.2	13
76	ldentification of peripheral oxytocinâ€expressing cells using systemically applied cellâ€ŧype specific adenoâ€associated viral vector. Journal of Neuroendocrinology, 2021, 33, e12970.	1.2	13
77	Neural input modulates osmotically stimulated release of vasopressin into the supraoptic nucleus. American Journal of Physiology - Endocrinology and Metabolism, 1996, 270, E787-E792.	1.8	9
78	TFF3 induced Fos protein expression in the magnocellular oxytocin neurons of the hypothalamus. Peptides, 2004, 25, 833-838.	1.2	9
79	Are Neuropeptides Brain Hormones?. Journal of Neuroendocrinology, 2011, 23, 381-382.	1.2	9
80	Effect of Melanotanâ€II on Brain Fos Immunoreactivity and Oxytocin Neuronal Activity and Secretion in Rats. Journal of Neuroendocrinology, 2017, 29, .	1.2	9
81	The actin filament and dendritic peptide release. Biochemical Society Transactions, 2007, 35, 1243-1246.	1.6	7
82	Reply to: Intranasal Oxytocin Mechanisms Can Be Better Understood, but Its Effects on Social Cognition and Behavior Are Not to Be Sniffed At. Biological Psychiatry, 2016, 79, e51-e52.	0.7	7
83	Effects of optogenetic stimulation of vasopressinergic retinal afferents on suprachiasmatic neurones. Journal of Neuroendocrinology, 2019, 31, e12806.	1.2	7
84	Intrahypothalamic vasopressin release. An inhibitor of systemic vasopressin secretion?. Advances in Experimental Medicine and Biology, 1998, 449, 163-73.	0.8	7
85	Opioids influence neurohypophysial but not central oxytocin release following direct hyperosmotic stimulation of the supraoptic nucleus in urethane-anaesthetised rats. Neuropeptides, 1994, 27, 121-127.	0.9	6
86	Do deficits in the magnocellular priming underlie visual derealization phenomena? Preliminary neurophysiological and self-report results in first-episode schizophrenia patients. Schizophrenia Research, 2014, 159, 441-449.	1.1	6
87	Effects of lateral olfactory tract stimulation on Fos immunoreactivity in vasopressin neurones of the rat piriform cortex. Journal of Neuroendocrinology, 2017, 29, e12531.	1.2	6
88	Vesicle degradation in dendrites of magnocellular neurones of the rat supraoptic nucleus. Neuroscience Letters, 2011, 489, 30-33.	1.0	5
89	Neural Control of the Posterior Pituitary Gland (Neurohypophysis). , 2012, , 139-155.		5
90	Coding of odors in the anterior olfactory nucleus. Physiological Reports, 2019, 7, e14284.	0.7	5

#	Article	IF	CITATIONS
91	Conditional Priming of Dendritic Neuropeptide Release. , 2005, , 209-221.		4
92	The Role of Neuroendocrinology in the Perinatal Period. Journal of Neuroendocrinology, 2008, 20, 417-418.	1.2	4
93	Reply to: Improving Research Standards to Restore Trust in Intranasal Oxytocin. Biological Psychiatry, 2016, 79, e55-e56.	0.7	4
94	Effects of antisense oligodeoxynucleotides on peptide release from hypothalamoneurohypophysial explants. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1997, 272, R1441-R1446.	0.9	2
95	Quo vadisneurohypophysial hormone research?. Experimental Physiology, 2000, 85, 267s-272s.	0.9	2
96	Somato-Dendritic Secretion of Neuropeptides. Masterclass in Neuroendocrinology, 2020, , 59-80.	0.1	1
97	Neuropeptide Release. , 2009, , 811-816.		1
98	How Your Brain Cells Talk to Each Other—Whispered Secrets and Public Announcements. Frontiers for Young Minds, 2017, 5, .	0.8	0
99	12th World Congress on Neurohypophysial Hormones, Mangaratiba, Rio de Janeiro, Brazil - 26-29 July 2017. Journal of Neuroendocrinology, 2018, 30, e12636.	1.2	0
100	How to get a black belt in electrophysiology: A Festschrift for Gareth Leng. Journal of Neuroendocrinology, 2021, 33, e13038.	1.2	0
101	Neuropeptide Release â~†. , 2017, , .		0