Christian Heinis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2386308/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An Engineered Protein Tag for Multiprotein Labeling in Living Cells. Chemistry and Biology, 2008, 15, 128-136.	6.0	940
2	Phage-encoded combinatorial chemical libraries based on bicyclic peptides. Nature Chemical Biology, 2009, 5, 502-507.	8.0	595
3	Cyclic peptide therapeutics: past, present and future. Current Opinion in Chemical Biology, 2017, 38, 24-29.	6.1	518
4	Bicyclic Peptide Inhibitor Reveals Large Contact Interface with a Protease Target. ACS Chemical Biology, 2012, 7, 817-821.	3.4	156
5	Directed evolution of O6-alkylguanine-DNA alkyltransferase for applications in protein labeling. Protein Engineering, Design and Selection, 2006, 19, 309-316.	2.1	136
6	Strategies to prolong the plasma residence time of peptidedrugs. MedChemComm, 2010, 1, 319-324.	3.4	130
7	Phage Selection of Cyclic Peptides for Application in Research and Drug Development. Accounts of Chemical Research, 2017, 50, 1866-1874.	15.6	117
8	Cyclization of peptides with two chemical bridges affords large scaffold diversities. Nature Chemistry, 2018, 10, 715-723.	13.6	113
9	Tools and rules for macrocycles. Nature Chemical Biology, 2014, 10, 696-698.	8.0	105
10	Peptide Ligands Stabilized by Small Molecules. Angewandte Chemie - International Edition, 2014, 53, 1602-1606.	13.8	103
11	Acylated heptapeptide binds albumin with high affinity and application as tag furnishes long-acting peptides. Nature Communications, 2017, 8, 16092.	12.8	101
12	Encoded libraries of chemically modified peptides. Current Opinion in Chemical Biology, 2015, 26, 89-98.	6.1	99
13	Structurally Diverse Cyclisation Linkers Impose Different Backbone Conformations in Bicyclic Peptides. ChemBioChem, 2012, 13, 1032-1038.	2.6	81
14	Bicyclic Peptide Ligands Pulled out of Cysteine-Rich Peptide Libraries. Journal of the American Chemical Society, 2013, 135, 6562-6569.	13.7	78
15	Boosting the Sensitivity of Ligand–Protein Screening by NMR of Long-Lived States. Journal of the American Chemical Society, 2012, 134, 11076-11079.	13.7	75
16	Dithiol amino acids can structurally shape and enhance the ligand-binding properties of polypeptides. Nature Chemistry, 2014, 6, 1009-1016.	13.6	73
17	Measuring InÂVivo Protein Half-Life. Chemistry and Biology, 2011, 18, 805-815.	6.0	71
18	Engineering Substrate Specificity of O6-Alkylguanine-DNA Alkyltransferase for Specific Protein Labeling in Living Cells. ChemBioChem, 2005, 6, 1263-1269.	2.6	68

#	Article	IF	CITATIONS
19	Phage Selection of Photoswitchable Peptide Ligands. Journal of the American Chemical Society, 2014, 136, 5880-5883.	13.7	67
20	Bicyclic Peptides with Optimized Ring Size Inhibit Human Plasma Kallikrein and its Orthologues While Sparing Paralogous Proteases. ChemMedChem, 2012, 7, 1173-1176.	3.2	66
21	De novo development of proteolytically resistant therapeutic peptides for oral administration. Nature Biomedical Engineering, 2020, 4, 560-571.	22.5	65
22	Phage selection of bicyclic peptides. Methods, 2013, 60, 46-54.	3.8	64
23	A Synthetic Factor XIIa Inhibitor Blocks Selectively Intrinsic Coagulation Initiation. ACS Chemical Biology, 2015, 10, 1861-1870.	3.4	64
24	Polycyclic Peptide Therapeutics. ChemMedChem, 2013, 8, 377-384.	3.2	63
25	Phage Selection of Chemically Stabilized α-Helical Peptide Ligands. ACS Chemical Biology, 2016, 11, 1422-1427.	3.4	63
26	Cyclic peptide FXII inhibitor provides safe anticoagulation in a thrombosis model and in artificial lungs. Nature Communications, 2020, 11, 3890.	12.8	61
27	Improving Binding Affinity and Stability of Peptide Ligands by Substituting Glycines with <scp>D</scp> â€Amino Acids. ChemBioChem, 2013, 14, 1316-1322.	2.6	56
28	Identification of target-binding peptide motifs by high-throughput sequencing of phage-selected peptides. Nucleic Acids Research, 2014, 42, e169-e169.	14.5	55
29	Development of a Selective Peptide Macrocycle Inhibitor of Coagulation Factor XII toward the Generation of a Safe Antithrombotic Therapy. Journal of Medicinal Chemistry, 2013, 56, 3742-3746.	6.4	53
30	Synthesis and Photochemical Properties of Oligo- <i>ortho</i> -azobenzenes. Journal of Organic Chemistry, 2011, 76, 9826-9834.	3.2	48
31	Bicyclization and Tethering to Albumin Yields Long-Acting Peptide Antagonists. Journal of Medicinal Chemistry, 2012, 55, 10187-10197.	6.4	47
32	Cys–Cys and Cys–Lys Stapling of Unprotected Peptides Enabled by Hypervalent Iodine Reagents. Angewandte Chemie - International Edition, 2021, 60, 9022-9031.	13.8	47
33	Peptide Macrocycle Inhibitor of Coagulation Factor XII with Subnanomolar Affinity and High Target Selectivity. Journal of Medicinal Chemistry, 2017, 60, 1151-1158.	6.4	45
34	Phage display libraries of differently sized bicyclic peptides. MedChemComm, 2013, 4, 145-150.	3.4	42
35	Precisely Regulated and Efficient Locking of Linear Peptides into Stable Multicyclic Topologies through a Oneâ€Pot Reaction. Angewandte Chemie - International Edition, 2017, 56, 4458-4463.	13.8	39
36	Development of Potent and Selective <i>S. aureus</i> Sortase A Inhibitors Based on Peptide Macrocycles. ACS Medicinal Chemistry Letters, 2016, 7, 606-611.	2.8	37

#	Article	IF	CITATIONS
37	Thiol-to-amine cyclization reaction enables screening of large libraries of macrocyclic compounds and the generation of sub-kilodalton ligands. Science Advances, 2019, 5, eaaw2851.	10.3	30
38	Enzymatic Cyclisation of Peptides with a Transglutaminase. ChemBioChem, 2011, 12, 38-42.	2.6	29
39	Post-translational modification of genetically encoded polypeptide libraries. Current Opinion in Chemical Biology, 2011, 15, 355-361.	6.1	28
40	Phage selection of cyclic peptide antagonists with increased stability toward intestinal proteases. Protein Engineering, Design and Selection, 2013, 26, 81-89.	2.1	28
41	Phage Selection of Peptide Macrocycles against β atenin To Interfere with Wnt Signaling. ChemMedChem, 2016, 11, 834-839.	3.2	28
42	Combination of polycarboxybetaine coating and factor XII inhibitor reduces clot formation while preserving normal tissue coagulation during extracorporeal life support. Biomaterials, 2021, 272, 120778.	11.4	28
43	Chemical Macrocyclization of Peptides Fused to Antibody Fc Fragments. Bioconjugate Chemistry, 2012, 23, 1856-1863.	3.6	27
44	Phage selection of bicyclic peptides binding Her2. Tetrahedron, 2014, 70, 7733-7739.	1.9	27
45	Evolving the Substrate Specificity of O6-Alkylguanine-DNA Alkyltransferase through Loop Insertion for Applications in Molecular Imaging. ACS Chemical Biology, 2006, 1, 575-584.	3.4	25
46	Phage Selection of Bicyclic Peptide Ligands of the Notch1 Receptor. ChemMedChem, 2015, 10, 1754-1761.	3.2	25
47	Bicyclic Peptides Conjugated to an Albumin-Binding Tag Diffuse Efficiently into Solid Tumors. Molecular Cancer Therapeutics, 2015, 14, 151-161.	4.1	25
48	Engineered Peptide Macrocycles Can Inhibit Matrix Metalloproteinases with High Selectivity. Angewandte Chemie - International Edition, 2019, 58, 11801-11805.	13.8	23
49	Polar Hinges as Functionalized Conformational Constraints in (Bi)cyclic Peptides. ChemBioChem, 2017, 18, 387-395.	2.6	18
50	Improving the Binding Affinity of inâ€Vitroâ€Evolved Cyclic Peptides by Inserting Atoms into the Macrocycle Backbone. ChemBioChem, 2016, 17, 2299-2303.	2.6	17
51	Phage Selection of Bicyclic Peptides Based on Two Disulfide Bridges. Methods in Molecular Biology, 2015, 1248, 119-137.	0.9	17
52	Pattern-Based Sensing of Peptides and Aminoglycosides with a Single Molecular Probe. Organic Letters, 2013, 15, 3456-3459.	4.6	16
53	Precisely Regulated and Efficient Locking of Linear Peptides into Stable Multicyclic Topologies through a Oneâ€Pot Reaction. Angewandte Chemie, 2017, 129, 4529-4534.	2.0	15
54	Picomoleâ€Scale Synthesis and Screening of Macrocyclic Compound Libraries by Acoustic Liquid Transfer. Angewandte Chemie - International Edition, 2021, 60, 21702-21707.	13.8	14

#	Article	IF	CITATIONS
55	Synthesis and direct assay of large macrocycle diversities by combinatorial late-stage modification at picomole scale. Nature Communications, 2022, 13, .	12.8	14
56	Generation of a Large Peptide Phage Display Library by Self-Ligation of Whole-Plasmid PCR Product. ACS Chemical Biology, 2020, 15, 2907-2915.	3.4	13
57	Cys–Cys and Cys–Lys Stapling of Unprotected Peptides Enabled by Hypervalent Iodine Reagents. Angewandte Chemie, 2021, 133, 9104-9113.	2.0	13
58	Synthesis of DNAâ€Encoded Disulfide―and Thioetherâ€Cyclized Peptides. ChemBioChem, 2020, 21, 543-549.	2.6	12
59	Macrocycle synthesis strategy based on step-wise "adding and reacting―three components enables screening of large combinatorial libraries. Chemical Science, 2020, 11, 7858-7863.	7.4	12
60	Screening of Large Molecule Diversities by Phage Display. Chimia, 2011, 65, 843-845.	0.6	10
61	Directed Evolution of Bicyclic Peptides for Therapeutic Application. Chimia, 2013, 67, 910-915.	0.6	10
62	Tracking chemical reactions on the surface of filamentous phage using mass spectrometry. Chemical Communications, 2014, 50, 5267-5269.	4.1	9
63	Development of Selective FXIa Inhibitors Based on Cyclic Peptides and Their Application for Safe Anticoagulation. Journal of Medicinal Chemistry, 2021, 64, 6802-6813.	6.4	8
64	Bicyclic Peptide Antagonists Derived from Genetically Encoded Combinatorial Libraries. Chimia, 2011, 65, 677-679.	0.6	7
65	Generation of a 100-billion cyclic peptide phage display library having a high skeletal diversity. Protein Engineering, Design and Selection, 2021, 34, .	2.1	7
66	Cyclative Release Strategy to Obtain Pure Cyclic Peptides Directly from the Solid Phase. ACS Chemical Biology, 2022, 17, 181-186.	3.4	7
67	Two General Methods for the Isolation of Enzyme Activities by Colony Filter Screening. Chemistry and Biology, 2002, 9, 383-390.	6.0	6
68	Using Peptide Loop Insertion Mutagenesis for the Evolution of Proteins. Methods in Molecular Biology, 2010, 634, 217-232.	0.9	5
69	Measuring net protease activities in biological samples using selective peptidic inhibitors. Analytical Biochemistry, 2012, 427, 18-20.	2.4	5
70	Tissue Factor-Independent Coagulation Correlates with Clinical Phenotype in Factor XI Deficiency and Replacement Therapy. Thrombosis and Haemostasis, 2021, 121, 150-163.	3.4	5
71	Solid-phase peptide synthesis on disulfide-linker resin followed by reductive release affords pure thiol-functionalized peptides. Organic and Biomolecular Chemistry, 2022, 20, 5699-5703.	2.8	5
72	Chemical Biology Approaches to Membrane Homeostasis and Function. Chimia, 2011, 65, 849-852.	0.6	3

#	Article	IF	CITATIONS
73	Engineered Peptide Macrocycles Can Inhibit Matrix Metalloproteinases with High Selectivity. Angewandte Chemie, 2019, 131, 11927-11931.	2.0	3
74	Towards the Development of Orally Available Peptide Therapeutics. Chimia, 2021, 75, 514.	0.6	3
75	Combining biological and chemical diversity. Nature Chemistry, 2021, 13, 512-513.	13.6	3
76	Bypassing bacterial infection in phage display by sequencing DNA released from phage particles. Protein Engineering, Design and Selection, 2017, 30, 761-768.	2.1	2
77	A releasable disulfide-linked peptide tag facilitates the synthesis and purification of short peptides. Chemical Communications, 2020, 56, 2917-2920.	4.1	2
78	In Vitro-Evolved Peptides Bind Monomeric Actin and Mimic Actin-Binding Protein Thymosin-β4. ACS Chemical Biology, 2021, 16, 820-828.	3.4	2
79	Picomoleâ€Scale Synthesis and Screening of Macrocyclic Compound Libraries by Acoustic Liquid Transfer. Angewandte Chemie, 2021, 133, 21870-21875.	2.0	2
80	Chemical biology & amp; drug discovery. European Journal of Medicinal Chemistry, 2014, 88, 1-2.	5.5	1
81	The Partnership of DMCCB and LS2. Chimia, 2018, 72, 817-818.	0.6	1
82	Phage Display Selected Cyclic Peptide Inhibitors of Kallikrein-Related Peptidases 5 and 7 and Their <i>In Vivo</i> Delivery to the Skin. Journal of Medicinal Chemistry, 2022, 65, 9735-9749.	6.4	1
83	Fast Directed Evolution of Non-Immunoglobulin Proteins by Somatic Hypermutation in Immune Cells. ChemBioChem, 2005, 6, 804-806.	2.6	0
84	The 4th Young Faculty Meeting – Science and Funding in its Different Varieties. Chimia, 2011, 65, 818-820.	0.6	0
85	Innenrücktitelbild: Precisely Regulated and Efficient Locking of Linear Peptides into Stable Multicyclic Topologies through a Oneâ€Pot Reaction (Angew. Chem. 16/2017). Angewandte Chemie, 2017, 129, 4701-4701	. 2.0	0
86	Drugs Based on de novo-developed Peptides are Coming of Age mune is a. Chimia, 2018, 72, 426-427.	0.6	0
87	Chemical Biology and Drug Discovery Symposium at the LS2 Annual Meeting 2021. Chimia, 2021, 75, 342-342.	0.6	0