$\tilde{D}\tilde{D} \gg \tilde{D} \mu \tilde{D}^o \tilde{N} \tilde{D}^o \tilde{D}^{1/2} \tilde{D}' \tilde{N} \in \tilde{D}' \tilde{D}^o \tilde{D} \gg \tilde{D}^{1/4} \tilde{D}^o \tilde{N}^1 \tilde{D}^o \tilde{D}^o$

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/238582/publications.pdf

Version: 2024-02-01

22 papers 85 citations

1937685 4 h-index 9 g-index

22 all docs 22 docs citations

22 times ranked 52 citing authors

#	Article	IF	Citations
1	Generation of Plasma Flow Based on ECR Discharge in a Narrow Coaxial Cavity. Plasma Physics Reports, 2020, 46, 102-104.	0.9	O
2	Self-Excitation of Low-Frequency Oscillations in the Plasma Ring Formed by an ECR Discharge in a Narrow Coaxial Cavity. Plasma Physics Reports, 2018, 44, 626-629.	0.9	1
3	Formation of a Plasma Ring by a Microwave Discharge in a Narrow Coaxial Cavity beyond the ECR Region. Plasma Physics Reports, 2018, 44, 594-599.	0.9	1
4	Formation of ECR Plasma in a Dielectric Plasma Guide under Self-Excitation of a Standing Ion-Acoustic Wave. Plasma Physics Reports, 2018, 44, 149-152.	0.9	0
5	Effect of a pulsating electric field on ECR heating in the CERA-RX(C) X-ray generator. Plasma Physics Reports, 2016, 42, 298-300.	0.9	O
6	Generation of the electric field pulsating at 2.45 GHz in the CERA-RX(C) electron cyclotron resonance source and its influence on X-ray generation efficiency. Plasma Physics Reports, 2013, 39, 1158-1161.	0.9	0
7	Electron cyclotron resonance plasma heating in the CERA-RX facility under a randomly pulsating electric field. Plasma Physics Reports, 2012, 38, 1053-1055.	0.9	O
8	Influence of the pulsating electric field on the ECR heating in a nonuniform magnetic field. Plasma Physics Reports, 2011, 37, 1178-1181.	0.9	0
9	CERA-V: Microwave plasma stream source with variable ion energy. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1996, 14, 471.	1.6	O
10	The influence of hydrogen plasma treatment on reverse currents in InGaP and InGaAlP. Solid-State Electronics, 1995, 38, 771-774.	1.4	4
11	Effects of proton implantation and hydrogen plasma passivation on electrical properties of InGaAlP and InGaP. Solid-State Electronics, 1995, 38, 1131-1135.	1.4	4
12	Hydrogen and nitrogen plasma treatment effects on surface properties of GaSb and InGaAsSb. Solid-State Electronics, 1995, 38, 1743-1745.	1.4	11
13	Hydrogen passivation effects in InGaAlP and InGaP. Journal of Applied Physics, 1994, 76, 7390-7398.	2.5	29
14	The effect of Gd doping on carrier concentration in InGaAsSb layers grown by liquid phase epitaxy. Thin Solid Films, 1994, 251, 147-150.	1.8	4
15	Hydrogen passivation effects in quaternary solid solutions of InGaAsSb lattice matched to GaSb. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1994, 27, 137-141.	3.5	3
16	Fermi Level Pinning in Au Schottky Barriers on InGaP and InGaAlP. Materials Research Society Symposia Proceedings, 1994, 340, 265.	0.1	0
17	Doping Efficiency and Deep Traps in MOCVD-Grown InGaAlP as Influenced by Stoichiometry and Hydrogen Passivation. Materials Research Society Symposia Proceedings, 1994, 340, 301.	0.1	O
18	Passivation of GaAs by atomic hydrogen flow produced by the crossed beams method. Semiconductor Science and Technology, 1990, 5, 242-245.	2.0	16

#	Article	IF	CITATIONS
19	Enhanced plasma confinement in a magnetic well by whistler waves. Physics Letters, Section A: General, Atomic and Solid State Physics, 1981, 84, 65-67.	2.1	0
20	Excitation of whistler waves by a helical wave structure. Journal Physics D: Applied Physics, 1981, 14, 1803-1809.	2.8	2
21	On the self-focusing of whistler waves in a radial inhomogeneous plasma. Physics Letters, Section A: General, Atomic and Solid State Physics, 1980, 79, 402-404.	2.1	10
22	Creation of plasma structures due to high frequency electromagnetic field actions for different applications. , 0, , .		O