## $\overline{D} \overline{D} = \overline{$

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/238582/publications.pdf

Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Hydrogen passivation effects in InGaAlP and InGaP. Journal of Applied Physics, 1994, 76, 7390-7398.                                                                                                                           | 2.5 | 29        |
| 2  | Passivation of GaAs by atomic hydrogen flow produced by the crossed beams method. Semiconductor Science and Technology, 1990, 5, 242-245.                                                                                     | 2.0 | 16        |
| 3  | Hydrogen and nitrogen plasma treatment effects on surface properties of GaSb and InGaAsSb.<br>Solid-State Electronics, 1995, 38, 1743-1745.                                                                                   | 1.4 | 11        |
| 4  | On the self-focusing of whistler waves in a radial inhomogeneous plasma. Physics Letters, Section A:<br>General, Atomic and Solid State Physics, 1980, 79, 402-404.                                                           | 2.1 | 10        |
| 5  | The effect of Gd doping on carrier concentration in InGaAsSb layers grown by liquid phase epitaxy.<br>Thin Solid Films, 1994, 251, 147-150.                                                                                   | 1.8 | 4         |
| 6  | The influence of hydrogen plasma treatment on reverse currents in InGaP and InGaAlP. Solid-State Electronics, 1995, 38, 771-774.                                                                                              | 1.4 | 4         |
| 7  | Effects of proton implantation and hydrogen plasma passivation on electrical properties of InGaAlP and InGaP. Solid-State Electronics, 1995, 38, 1131-1135.                                                                   | 1.4 | 4         |
| 8  | Hydrogen passivation effects in quaternary solid solutions of InGaAsSb lattice matched to GaSb.<br>Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1994, 27, 137-141.                     | 3.5 | 3         |
| 9  | Excitation of whistler waves by a helical wave structure. Journal Physics D: Applied Physics, 1981, 14, 1803-1809.                                                                                                            | 2.8 | 2         |
| 10 | Self-Excitation of Low-Frequency Oscillations in the Plasma Ring Formed by an ECR Discharge in a<br>Narrow Coaxial Cavity. Plasma Physics Reports, 2018, 44, 626-629.                                                         | 0.9 | 1         |
| 11 | Formation of a Plasma Ring by a Microwave Discharge in a Narrow Coaxial Cavity beyond the ECR<br>Region. Plasma Physics Reports, 2018, 44, 594-599.                                                                           | 0.9 | 1         |
| 12 | Enhanced plasma confinement in a magnetic well by whistler waves. Physics Letters, Section A:<br>General, Atomic and Solid State Physics, 1981, 84, 65-67.                                                                    | 2.1 | 0         |
| 13 | Fermi Level Pinning in Au Schottky Barriers on InGaP and InGaAlP. Materials Research Society Symposia<br>Proceedings, 1994, 340, 265.                                                                                         | 0.1 | Ο         |
| 14 | Doping Efficiency and Deep Traps in MOCVD-Grown InGaAlP as Influenced by Stoichiometry and<br>Hydrogen Passivation. Materials Research Society Symposia Proceedings, 1994, 340, 301.                                          | 0.1 | 0         |
| 15 | CERA-V: Microwave plasma stream source with variable ion energy. Journal of Vacuum Science &<br>Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and<br>Phenomena, 1996, 14, 471. | 1.6 | 0         |
| 16 | Creation of plasma structures due to high frequency electromagnetic field actions for different applications. , 0, , .                                                                                                        |     | 0         |
| 17 | Influence of the pulsating electric field on the ECR heating in a nonuniform magnetic field. Plasma<br>Physics Reports, 2011, 37, 1178-1181.                                                                                  | 0.9 | 0         |
| 18 | Electron cyclotron resonance plasma heating in the CERA-RX facility under a randomly pulsating electric field. Plasma Physics Reports, 2012, 38, 1053-1055.                                                                   | 0.9 | 0         |

| #  | Article                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Generation of the electric field pulsating at 2.45 GHz in the CERA-RX(C) electron cyclotron resonance source and its influence on X-ray generation efficiency. Plasma Physics Reports, 2013, 39, 1158-1161. | 0.9 | 0         |
| 20 | Effect of a pulsating electric field on ECR heating in the CERA-RX(C) X-ray generator. Plasma Physics<br>Reports, 2016, 42, 298-300.                                                                        | 0.9 | 0         |
| 21 | Formation of ECR Plasma in a Dielectric Plasma Guide under Self-Excitation of a Standing Ion-Acoustic<br>Wave. Plasma Physics Reports, 2018, 44, 149-152.                                                   | 0.9 | 0         |
| 22 | Generation of Plasma Flow Based on ECR Discharge in a Narrow Coaxial Cavity. Plasma Physics<br>Reports, 2020, 46, 102-104.                                                                                  | 0.9 | 0         |