
Lorella Battelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2385569/publications.pdf Version: 2024-02-01

LODELLA RATTELLI

#	Article	IF	CITATIONS
1	Repetitive TMS over posterior STS disrupts perception of biological motion. Vision Research, 2005, 45, 2847-2853.	0.7	240
2	The â€~when' pathway of the right parietal lobe. Trends in Cognitive Sciences, 2007, 11, 204-210.	4.0	209
3	Unilateral Right Parietal Damage Leads to Bilateral Deficit for High-Level Motion. Neuron, 2001, 32, 985-995.	3.8	164
4	Transcranial magnetic stimulation of visual area V5 in migraine. Neurology, 2002, 58, 1066-1069.	1.5	143
5	Baseline Cortical Excitability Determines Whether TMS Disrupts or Facilitates Behavior. Journal of Neurophysiology, 2008, 99, 2725-2730.	0.9	107
6	Improved Motion Perception and Impaired Spatial Suppression following Disruption of Cortical Area MT/V5. Journal of Neuroscience, 2011, 31, 1279-1283.	1.7	99
7	Distinct Neural Mechanisms for Body Form and Body Motion Discriminations. Journal of Neuroscience, 2014, 34, 574-585.	1.7	93
8	Perception of biological motion in parietal patients. Neuropsychologia, 2003, 41, 1808-1816.	0.7	90
9	Bilateral deficits of transient visual attention in right parietal patients. Brain, 2003, 126, 2164-2174.	3.7	80
10	Functional recruitment of visual cortex for sound encoded object identification in the blind. NeuroReport, 2009, 20, 132-138.	0.6	76
11	The Role of the Parietal Lobe in Visual Extinction Studied with Transcranial Magnetic Stimulation. Journal of Cognitive Neuroscience, 2009, 21, 1946-1955.	1.1	75
12	The â€~when' parietal pathway explored by lesion studies. Current Opinion in Neurobiology, 2008, 18, 120-126.	2.0	74
13	Boosting Learning Efficacy with Noninvasive Brain Stimulation in Intact and Brain-Damaged Humans. Journal of Neuroscience, 2019, 39, 5551-5561.	1.7	68
14	The role of the angular gyrus in the modulation of visuospatial attention by the mental number line. NeuroImage, 2009, 44, 563-568.	2.1	61
15	The Origin of Word-related Motor Activity. Cerebral Cortex, 2015, 25, 1668-1675.	1.6	57
16	The compensatory dynamic of inter-hemispheric interactions in visuospatial attention revealed using rTMS and fMRI. Frontiers in Human Neuroscience, 2014, 8, 226.	1.0	47
17	The Continuous Wagon Wheel Illusion and the â€~When' Pathway of the Right Parietal Lobe: A Repetitive Transcranial Magnetic Stimulation Study. PLoS ONE, 2008, 3, e2911.	1.1	29
18	The effect of expectation on facilitation of colour/form conjunction tasks by TMS over area V5. Neuropsychologia, 2003, 41, 1794-1801.	0.7	28

Lorella Battelli

#	Article	IF	CITATIONS
19	Contralesional rTMS relieves visual extinction in chronic stroke. Neuropsychologia, 2014, 62, 269-276.	0.7	28
20	Transcranial random-noise stimulation of visual cortex potentiates value-driven attentional capture. Social Cognitive and Affective Neuroscience, 2016, 11, 1481-1488.	1.5	28
21	The Default Computation of Negated Meanings. Journal of Cognitive Neuroscience, 2016, 28, 1980-1986.	1.1	28
22	The Pivotal Role of the Right Parietal Lobe in Temporal Attention. Journal of Cognitive Neuroscience, 2017, 29, 805-815.	1.1	26
23	Progressive visual agnosia with posterior cortical atrophy. Clinical Neurology and Neurosurgery, 1996, 98, 176-178.	0.6	23
24	Local Immediate versus Long-Range Delayed Changes in Functional Connectivity Following rTMS on the Visual Attention Network. Brain Stimulation, 2017, 10, 263-269.	0.7	23
25	The mental number line modulates visual cortical excitability. Neuroscience Letters, 2009, 462, 253-256.	1.0	21
26	Rapid Improvement on a Temporal Attention Task within a Single Session of High-frequency Transcranial Random Noise Stimulation. Journal of Cognitive Neuroscience, 2018, 30, 656-666.	1.1	21
27	Modulating the excitability of the visual cortex using a stimulation priming paradigm. Neuropsychologia, 2018, 119, 165-171.	0.7	20
28	Human movements and abstract motion displays activate different processes in the observer's motor system. NeuroImage, 2016, 130, 184-193.	2.1	16
29	Functional connectivity of parietal cortex during temporal selective attention. Cortex, 2015, 65, 195-207.	1.1	15
30	The critical role of the dorsal fronto-median cortex in voluntary action inhibition: A TMS study. Brain Stimulation, 2017, 10, 596-603.	0.7	13
31	Motor Preparation for Action Inhibition: A Review of Single Pulse TMS Studies Using the Go/NoGo Paradigm. Frontiers in Psychology, 2019, 10, 340.	1.1	13
32	Transcranial Random Noise Stimulation Enhances Visual Learning In Healthy Adults. Journal of Vision, 2015, 15, 40.	0.1	11
33	Attention network modulation via tRNS correlates with attention gain. ELife, 2021, 10, .	2.8	11
34	Report of a delayed seizure after low frequency repetitive Transcranial Magnetic Stimulation in a chronic stroke patient. Clinical Neurophysiology, 2016, 127, 1736-1737.	0.7	10
35	Prolonged Neuromodulation of Cortical Networks Following Low-Frequency rTMS and Its Potential for Clinical Interventions. Frontiers in Psychology, 2019, 10, 529.	1.1	10
36	Lateralized cognitive functions in Parkinson's patients: A behavioral approach for the early detection of sustained attention deficits. Brain Research, 2020, 1726, 146486.	1.1	10

Lorella Battelli

#	Article	IF	CITATIONS
37	Dissociation between Contour-based and Texture-based Shape Perception: A Single Case Study. Visual Cognition, 1997, 4, 275-310.	0.9	9
38	The impact of psychostimulants on sustained attention over a 24-h period. Cognition, 2019, 193, 104015.	1.1	7
39	Controlling Brain State Prior to Stimulation of Parietal Cortex Prevents Deterioration of Sustained Attention. Cerebral Cortex Communications, 2020, 1, tgaa069.	0.7	6
40	Rapid effect of high-frequency tRNS over the parietal lobe during a temporal perceptual learning task. Journal of Vision, 2015, 15, 393.	0.1	5
41	The middle range of the number line orients attention to the left side of visual space. Cognitive Neuropsychology, 2009, 26, 235-246.	0.4	3
42	Proactive Inhibition Activation Depends on Motor Preparation: A Single Pulse TMS Study. Frontiers in Psychology, 2018, 9, 1891.	1.1	2
43	Understanding diaschisis models of attention dysfunction with rTMS. Scientific Reports, 2020, 10, 14890.	1.6	2
44	Behavioral gain following isolation of attention. Scientific Reports, 2021, 11, 19329.	1.6	2
45	TMS over STSp disrupts perception of biological motion. Journal of Vision, 2004, 4, 239-239.	0.1	2
46	Effects of transcranial direct current stimulation over the posterior parietal cortex on novice X-ray screening performance. Cortex, 2020, 132, 1-14.	1.1	2
47	Lateralized Temporal Parietal Junction (TPJ) activity during temporal order judgment tasks. Journal of Vision, 2011, 11, 264-264.	0.1	1
48	Stimulation of the left parietal lobe improves spatial and temporal attention in right parietal lobe patients: tipping the inter-hemispheric balance with TMS. Journal of Vision, 2013, 13, 287-287.	0.1	1
49	rTMS to right inferior parietal lobule dilates the subjective experience of time. Journal of Vision, 2013, 13, 316-316.	0.1	1
50	tRNS facilitates perceptual learning on cross-task training. Journal of Vision, 2017, 17, 1095.	0.1	1
51	Double dissociation between the extrastriate body area and the posterior superior temporal sulcus during biological motion perception: converging evidence from TMS and fMRI. Journal of Vision, 2012, 12, 937-937.	0.1	1
52	Improving left visual field attention in right unilateral stroke patients. Journal of Vision, 2021, 21, 2216.	0.1	0
53	Neuronal Encoding of movement kinematics during action observation: a TMS study. Journal of Vision, 2011, 11, 689-689.	0.1	0
54	Spatial cueing and task difficulty effects on the temporal attention selective temporal parietal junction. Journal of Vision, 2012, 12, 139-139.	0.1	0

LORELLA BATTELLI

#	Article	IF	CITATIONS
55	Dissociating mechanisms of spatial suppression and summation in human MT: a tDCS study. Journal of Vision, 2012, 12, 934-934.	0.1	Ο
56	Right hemisphere dominance in temporal attention: a TMS study. Journal of Vision, 2013, 13, 1199-1199.	0.1	0
57	The neural basis of 3D rotation sensitivity from self-generated Optic Flow: a Transcranial Magnetic Stimulation Study. Journal of Vision, 2013, 13, 449-449.	0.1	0
58	Temporal Segregation Deficit in Visual Perception: A Single Case Study. Neurocase, 1997, 3, 349-364.	0.2	0
59	rTMS to pSTS alters the ability to perceive walking direction of 3D point light walkers. Journal of Vision, 2014, 14, 1014-1014.	0.1	0
60	The attentional blink in right parietal patients: Analysis of temporal selection parameters. Journal of Vision, 2014, 14, 545-545.	0.1	0
61	Visual extinction in Parkinson patients. Journal of Vision, 2014, 14, 1337-1337.	0.1	0
62	Local Immediate Versus Long-Range Delayed Impact Of rTMS On The Visual Attention Network. Journal of Vision, 2016, 16, 607.	0.1	0
63	The effect of TMS intensity on contrast sensitivity. Journal of Vision, 2017, 17, 1188.	0.1	0
64	Long-Term Functional Connectivity Changes Across The Dorsal Attention Network After Transcranial Electrical Stimulation. Journal of Vision, 2018, 18, 986.	0.1	0
65	Late enhancement of visual attention after multi-method brain stimulation. Journal of Vision, 2018, 18, 1188.	0.1	0
66	Probing mutual inhibition between attention regions using attention isolation. Journal of Vision, 2020, 20, 363.	0.1	0