List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2385559/publications.pdf Version: 2024-02-01

TEDESA VIEIDA

#	Article	IF	CITATIONS
1	Micro metal powder hot embossing: influence of binder on austenitic stainless steel microparts replicability. Powder Metallurgy, 2022, 65, 112-120.	1.7	1
2	Development of Actuators for Repairing Cracks by Coating W Wires with Reactive Multilayers. Materials, 2022, 15, 869.	2.9	0
3	Joining of Ti6Al4V to Al2O3 Using Nanomultilayers. Nanomaterials, 2022, 12, 706.	4.1	0
4	Micromechanical Modeling of the Material Impact in the Feedstock Filament Properties for Indirect Additive Manufacturing (MEX). , 2022, 8, .		0
5	Dual Function WS2 Thin-Films as a Substrate for Ultrafast Response Thermocouple to Temperature Evaluation in µinjection Molding. , 2022, 8, .		0
6	WC-Co Filament for Material Extrusion (MEX). , 2022, 8, .		0
7	The Study of New NiTi Actuators to Reinforce the Wing Movement of Aircraft Systems. Materials, 2022, 15, 4787.	2.9	2
8	Enhancing the electrical and dielectric properties of ZnO nanoparticles through Fe dopingÂfor electric storage applications. Journal of Materials Science: Materials in Electronics, 2021, 32, 1536-1556.	2.2	25
9	Diffusion Bonding of Ti6Al4V to Al2O3 Using Ni/Ti Reactive Multilayers. Metals, 2021, 11, 655.	2.3	6
10	Additive Manufacturing. U Porto Journal of Engineering, 2021, 7, 53-69.	0.4	3
11	Optimization of metallic powder filaments for additive manufacturing extrusion (MEX). International Journal of Advanced Manufacturing Technology, 2021, 115, 2449-2464.	3.0	18
12	Experimental Analysis of NiTi Alloy during Strain-Controlled Low-Cycle Fatigue. Materials, 2021, 14, 4455.	2.9	3
13	High-speed machining tool-steel chips as an outstanding raw material for indirect additive manufacturing?. Results in Materials, 2021, 11, 100207.	1.8	3
14	From Machining Chips to Raw Material for Powder Metallurgy—A Review. Materials, 2021, 14, 5432.	2.9	11
15	Development and characterization of AISI 316L micro parts produced by metal powder hot embossing. International Journal of Advanced Manufacturing Technology, 2021, 113, 407-417.	3.0	3
16	Influence of Metallic Powder Characteristics on Extruded Feedstock Performance for Indirect Additive Manufacturing. Materials, 2021, 14, 7136.	2.9	4
17	Follow-up structural evolution of Ni/Ti reactive nano and microlayers during diffusion bonding of NiTi to Ti6Al4V in a synchrotron beamline. Journal of Materials Processing Technology, 2020, 275, 116354.	6.3	17
18	Characterization of Sintered Aluminium Reinforced with Ultrafine Tungsten Carbide Particles. Metals, 2020, 10, 1416.	2.3	1

#	Article	IF	CITATIONS
19	Effect of Deposition Parameters on the Reactivity of Al/Ni Multilayer Thin Films. Coatings, 2020, 10, 721.	2.6	3
20	In Search of the Optimal Conditions to Process Shape Memory Alloys (NiTi) Using Fused Filament Fabrication (FFF). Materials, 2020, 13, 4718.	2.9	8
21	MicroÂPowder Hot Embossing of Aluminum Feedstock. Journal of Materials Engineering and Performance, 2020, 29, 3395-3403.	2.5	2
22	Development of Metal Powder Hot Embossing: A New Method for Micromanufacturing. Metals, 2020, 10, 388.	2.3	12
23	New WC-Cu composites for the divertor in fusion reactors. Journal of Nuclear Materials, 2019, 521, 31-37.	2.7	12
24	Diffusion Bonding of TiAl to Ti6Al4V Using Nanolayers. Journal of Materials Engineering and Performance, 2018, 27, 5064-5068.	2.5	8
25	The role of nanocrystalline binder metallic coating into WC after additive manufacturing. Applied Surface Science, 2018, 427, 131-138.	6.1	15
26	Microstructural Characterization of Dissimilar Titanium Alloys Joints Using Ni/Al Nanolayers. Metals, 2018, 8, 715.	2.3	10
27	Effect of Reinforcement Type and Dispersion on the Hardening of Sintered Pure Aluminium. Metals, 2018, 8, 786.	2.3	6
28	Interaction between Ni/Ti Nanomultilayers and Bulk Ti-6Al-4V during Heat Treatment. Metals, 2018, 8, 878.	2.3	4
29	The effect of heating rate on the phase transformation of Ni/Ti multilayer thin films. Vacuum, 2017, 139, 23-25.	3.5	8
30	Positron Annihilation Study on Nanocrystalline Copper Thin Films Doped with Nitrogen. Advanced Structured Materials, 2017, , 15-24.	0.5	1
31	MWCNT reinforced SS 316L matrix composites. Advances in Materials and Processing Technologies, 2017, 3, 640-650.	1.4	2
32	Optimization of MWCNT – Metal Matrix Composites feedstocks. Ciência & Tecnologia Dos Materiais, 2017, 29, e87-e91.	0.5	6
33	Nondestructive testing in microfabrication using bacteria. Ciência & Tecnologia Dos Materiais, 2017, 29, e262-e264.	0.5	0
34	In the search of nanocrystallinity in tool-steel chips. Ciência & Tecnologia Dos Materiais, 2017, 29, e62-e64.	0.5	1
35	TiAl diffusion bonding using Ni/Ti multilayers. Welding in the World, Le Soudage Dans Le Monde, 2017, 61, 1267-1273.	2.5	12
36	Assessment of airborne nanoparticles present in industry of aluminum surface treatments. Journal of Occupational and Environmental Hygiene, 2017, 14, D29-D36.	1.0	8

#	Article	IF	CITATIONS
37	Joining of TiAl to Steel by Diffusion Bonding with Ni/Ti Reactive Multilayers. Metals, 2016, 6, 96.	2.3	31
38	Impact of Binder on AISI 316L Microcomponents Produced by Hot Embossing: SEM/EBSD Analysis. Microscopy and Microanalysis, 2016, 22, 50-51.	0.4	11
39	Characterization of TiAl diffusion bonds using Ni/Ti nanolayers. Microscopy and Microanalysis, 2016, 22, 54-55.	0.4	0
40	Cold rolled versus sputtered Ni/Ti multilayers for reaction-assisted diffusion bonding. Welding in the World, Le Soudage Dans Le Monde, 2016, 60, 337-344.	2.5	14
41	Ni/Al Multilayers Produced by Accumulative Roll Bonding and Sputtering. Journal of Materials Engineering and Performance, 2016, 25, 4394-4401.	2.5	13
42	Microstructural Characterization of Diffusion Bonds Assisted by Ni/Ti Nanolayers. Journal of Materials Engineering and Performance, 2016, 25, 3245-3251.	2.5	7
43	Reaction-assisted diffusion bonding of TiAl alloy to steel. Materials Chemistry and Physics, 2016, 171, 73-82.	4.0	17
44	Developments in micro- and nano-defects detection using bacterial cells. NDT and E International, 2016, 78, 20-28.	3.7	4
45	Microstructural Evaluation of Consolidated Modified SS 316L Powder. Microscopy and Microanalysis, 2015, 21, 21-22.	0.4	0
46	Microstructural Characterization of Metallic Parts Produced by Hot Embossing. Microscopy and Microanalysis, 2015, 21, 49-50.	0.4	5
47	Characterization of nanolayers at TiAl diffusion bonds. Microscopy and Microanalysis, 2015, 21, 96-97.	0.4	0
48	Microstructural characterization of WC-AISI304 composites obtained by selective laser sintering. Microscopy and Microanalysis, 2015, 21, 104-105.	0.4	1
49	Microstructural inspection of the M6C phase in heat-treated WC-AISI 304 stainless steel powders. Microscopy and Microanalysis, 2015, 21, 110-111.	0.4	0
50	EBSD Characterization of WC-AISI304 Cemented Carbides. Microscopy and Microanalysis, 2015, 21, 25-26.	0.4	1
51	NiTi Wires Coated by Nanomultilayers – A Solution for Self-healing?. Microscopy and Microanalysis, 2015, 21, 11-12.	0.4	0
52	Phase transformations in Ni/Ti multilayers investigated by synchrotron radiation-based x-ray diffraction. Journal of Alloys and Compounds, 2015, 646, 1165-1171.	5.5	17
53	TEM and HRTEM Characterization of TiAl Diffusion Bonds Using Ni/Al Nanolayers. Microscopy and Microanalysis, 2015, 21, 132-139.	0.4	13
54	Mechanical behaviour of dental implants manufactured from metallic powders by μMIM. Ciência & Tecnologia Dos Materiais, 2014, 26, 89-95.	0.5	2

#	Article	IF	CITATIONS
55	Hot micro-embossing: effect of pressure on 316L metal parts. Powder Metallurgy, 2014, 57, 241-244.	1.7	6
56	Explosive consolidation of 316L stainless steel powder – Effect of phase composition. Advanced Powder Technology, 2014, 25, 1469-1473.	4.1	9
57	Microstructure evolution and texture development in a friction stir-processed AISI D2 tool steel. Applied Surface Science, 2014, 293, 151-159.	6.1	16
58	Surface enhancement of cold work tool steels by friction stir processing with a pinless tool. Applied Surface Science, 2014, 296, 214-220.	6.1	30
59	In Situ Characterization of NiTi/Ti6Al4V Joints During Reaction-Assisted Diffusion Bonding Using Ni/Ti Multilayers. Journal of Materials Engineering and Performance, 2014, 23, 1625-1629.	2.5	22
60	In Situ Phase Evolution of Ni/Ti Reactive Multilayers. Journal of Materials Engineering and Performance, 2014, 23, 2446-2449.	2.5	1
61	In-situ thermal evolution of Ni/Ti multilayer thin films. Intermetallics, 2014, 51, 11-17.	3.9	27
62	Thermal stability of nanoscale metallic multilayers. Thin Solid Films, 2014, 571, 268-274.	1.8	21
63	Production of Sintered α-Alumina by Explosive Compaction from Low Temperature Calcinated Aluminum-Rich Sludge. Waste and Biomass Valorization, 2013, 4, 627-633.	3.4	3
64	Reaction zone formed during diffusion bonding of TiNi to Ti6Al4V using Ni/Ti nanolayers. Journal of Materials Science, 2013, 48, 7718-7727.	3.7	37
65	Morphological characterization by scanning electron microscopy of WC powder particles coated with Cu. Microscopy and Microanalysis, 2013, 19, 145-146.	0.4	3
66	Interface Exploring of Tungsten Carbide-Stainless Steel Composites through HRTEM. Microscopy and Microanalysis, 2012, 18, 109-110.	0.4	5
67	Comparison of deposited surface area of airborne ultrafine particles generated from two welding processes. Inhalation Toxicology, 2012, 24, 774-781.	1.6	29
68	Energetic materials for nanocrystalline stainless steel production. Journal of Alloys and Compounds, 2012, 536, S575-S581.	5.5	6
69	Determination of Airborne Nanoparticles from Welding Operations. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2012, 75, 747-755.	2.3	47
70	Versatility of the sputtering technique in the processing of WC–Fe–Ni–Cr composites. Surface and Coatings Technology, 2012, 206, 4915-4921.	4.8	10
71	Intermetallic compound formation in Pd/Al multilayer thin films. Intermetallics, 2012, 25, 70-74.	3.9	13
72	Diffusion bonding of gamma-TiAl using modified Ti/Al nanolayers. Journal of Alloys and Compounds, 2012, 536, S424-S427.	5.5	29

#	Article	IF	CITATIONS
73	Microstructure of Reaction Zone Formed During Diffusion Bonding of TiAl with Ni/Al Multilayer. Journal of Materials Engineering and Performance, 2012, 21, 678-682.	2.5	26
74	An efficient strategy to detect latent fingermarks on metallic surfaces. Forensic Science International, 2012, 217, 196-203.	2.2	14
75	Anisothermal solid-state reactions of Ni/Al nanometric multilayers. Intermetallics, 2011, 19, 350-356.	3.9	50
76	Diffusion bonding of TiAl using reactive Ni/Al nanolayers and Ti and Ni foils. Materials Chemistry and Physics, 2011, 128, 202-207.	4.0	58
77	Effect of LBM and large-area EBM finishing on micro-injection moulding surfaces. International Journal of Advanced Manufacturing Technology, 2011, 52, 171-182.	3.0	22
78	TEM Characterization of As-Deposited and Annealed Ni/Al Multilayer Thin Film. Microscopy and Microanalysis, 2010, 16, 662-669.	0.4	9
79	Diffusion bonding of TiAl using Ni/Al multilayers. Journal of Materials Science, 2010, 45, 4351-4357.	3.7	47
80	Reaction-Assisted Diffusion Bonding of Advanced Materials. Defect and Diffusion Forum, 2010, 297-301, 972-977.	0.4	17
81	A corrosion study of nanocrystalline copper thin films. Corrosion Science, 2010, 52, 3891-3895.	6.6	19
82	<i>In situ</i> TEM study of grain growth in nanocrystalline copper thin films. Nanotechnology, 2010, 21, 145701.	2.6	115
83	Fine tuning injection feedstock by nano coating SS powder. Metal Powder Report, 2009, 64, 18-21.	0.1	19
84	Advantages of depositing multilayer coatings for cutting wood-based products. Surface and Coatings Technology, 2009, 203, 3197-3205.	4.8	11
85	Carbide phases formed in WC–M (M=Fe/Ni/Cr) systems. Ceramics International, 2009, 35, 369-372.	4.8	42
86	Composites from WC powders sputter-deposited with iron rich binders. Ceramics International, 2009, 35, 1617-1623.	4.8	21
87	Shock activation of α-alumina from calcinated Al-rich sludge. Ceramics International, 2009, 35, 1897-1904.	4.8	5
88	Composite copper/stainless steel coated powders. Journal of Alloys and Compounds, 2009, 483, 460-463.	5.5	5
89	Behavior of explosive compacted/consolidated of nanometric copper powders. Journal of Alloys and Compounds, 2009, 483, 235-238.	5.5	24
90	Production of intermetallic compounds from Ti/Al and Ni/Al multilayer thin films—A comparative study. Journal of Alloys and Compounds, 2009, 484, 335-340.	5.5	67

#	Article	IF	CITATIONS
91	Annealing Ni nanocrystalline on WC–Co. Journal of Alloys and Compounds, 2009, 482, 131-136.	5.5	2
92	Intermixing in Ni/Al multilayer thin films. Microscopy and Microanalysis, 2009, 15, 75-76.	0.4	4
93	Joining of TiAl alloys using Ni/Al multilayers. Microscopy and Microanalysis, 2009, 15, 73-74.	0.4	0
94	Mechanical Characterization of a Functionally Graded Nanocomposite Thin Film. Journal of Nanoscience and Nanotechnology, 2009, 9, 3792-3797.	0.9	4
95	The Effect of Nitrogen on the Formation of Nanocrystalline Copper Thin Films. Journal of Nanoscience and Nanotechnology, 2009, 9, 3921-3926.	0.9	3
96	Ti/Al Nanolayered Thin Films. Journal of Nanoscience and Nanotechnology, 2009, 9, 3627-3632.	0.9	3
97	Structural phase evolution with temperature of non-conventional particles in PIM. Journal of Materials Processing Technology, 2008, 199, 425-430.	6.3	1
98	Surface modification of stainless steel powders for microfabrication. Journal of Materials Processing Technology, 2008, 201, 651-656.	6.3	13
99	Thin films with chemically graded functionality based on fluorine polymers and stainless steel. Acta Biomaterialia, 2008, 4, 1073-1080.	8.3	23
100	Coated WC powders by sputtered nanostructured Ni and stainless steel. Vacuum, 2008, 82, 1404-1406.	3.5	9
101	Microwaves show off their advantages in efficient sintering. Metal Powder Report, 2008, 63, 12-15.	0.1	12
102	Mechanical characterization of composites prepared from WC powders coated with Ni rich binders. International Journal of Refractory Metals and Hard Materials, 2008, 26, 491-498.	3.8	34
103	Intermetallic phase formation in nanometric Ni/Al multilayer thin films. Intermetallics, 2008, 16, 1061-1065.	3.9	67
104	TEM and SEM in-situ annealing of nanocrystalline copper thin films. Microscopy and Microanalysis, 2008, 14, 49-52.	0.4	4
105	<i>In Vitro</i> Behavior and Surface Morphology of Modified 316L Stainless Steel Stents. Microscopy and Microanalysis, 2008, 14, 35-36.	0.4	2
106	Microscopic Characterization of the Thermal Evolution of Stainless Steel Coatings Sputter-deposited onto WC Particles. Microscopy and Microanalysis, 2008, 14, 39-40.	0.4	3
107	Reinforcement Coating on Stainless Steel and Copper Powders. Microscopy and Microanalysis, 2008, 14, 43-46.	0.4	1
108	In vitrobehaviour of nanocrystalline silver-sputtered thin films. Nanotechnology, 2007, 18, 105103.	2.6	22

#	Article	IF	CITATIONS
109	Thermal Stability of Nanocrystalline Copper Thin Films. Microscopy and Microanalysis, 2007, 13, .	0.4	1
110	Nanostructured coated powders for structural net shape components. Journal of Alloys and Compounds, 2007, 434-435, 383-385.	5.5	3
111	In-Situ TEM Annealing of Nanocrystalline Copper Thin Films. Microscopy and Microanalysis, 2007, 13, .	0.4	0
112	Mullitization kinetics from silica- and alumina-rich wastes. Ceramics International, 2007, 33, 59-66.	4.8	28
113	Control of eta carbide formation in tungsten carbide powders sputter-coated with (Fe/Ni/Cr). International Journal of Refractory Metals and Hard Materials, 2007, 25, 310-317.	3.8	48
114	Preparation and physicochemical characterization of omeprazole:methyl-beta-cyclodextrin inclusion complex in solid state. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2007, 57, 173-177.	1.6	38
115	From Ti–Al- to Ti–Al–N-sputtered 2D materials. Journal of Materials Science, 2007, 42, 9145-9153.	3.7	4
116	Solid-state diffusion bonding of gamma-TiAl alloys using Ti/Al thin films as interlayers. Intermetallics, 2006, 14, 1151-1156.	3.9	67
117	Nanometric multilayers: A new approach for joining TiAl. Intermetallics, 2006, 14, 1157-1162.	3.9	57
118	Hard Coatings Based on Metal Nitrides, Metal Carbides and Nanocomposite Materials: PVD Process and Properties. , 2006, , 537-572.		5
119	PIM of non-conventional particles. Ceramics International, 2006, 32, 297-302.	4.8	14
120	Particle surface properties of stainless steel-coated tungsten carbide powders. Powder Technology, 2006, 164, 124-129.	4.2	20
121	The formation of γ-TiAl from Ti/Al multilayers with different periods. Surface and Coatings Technology, 2006, 200, 6196-6200.	4.8	38
122	Structure, hardness and thermal stability of Ti(Al,N) coatings. Surface and Coatings Technology, 2006, 201, 4073-4077.	4.8	13
123	Kinetics of the thin films transformation Ti/Al multilayer→γ-TiAl. Surface and Coatings Technology, 2005, 200, 326-329.	4.8	36
124	The influence of erbium doping of Al–N sputtered coatings on their optical properties. Thin Solid Films, 2004, 446, 264-270.	1.8	15
125	Sintering of tungsten carbide particles sputter-deposited with stainless steel. International Journal of Refractory Metals and Hard Materials, 2003, 21, 147-154.	3.8	28
126	Stainless steel coatings sputter-deposited on tungsten carbide powder particles. Surface and Coatings Technology, 2003, 176, 103-108.	4.8	35

#	Article	IF	CITATIONS
127	Influence of Ti addition on the properties of W–Ti–C/N sputtered films. Surface and Coatings Technology, 2003, 174-175, 68-75.	4.8	51
128	Modification of the structural order of transition metal–carbon systems by the addition of a Group VIII element. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 352, 195-201.	5.6	25
129	Ceramic products obtained from rock wastes. Journal of Materials Processing Technology, 2003, 143-144, 843-845.	6.3	20
130	Recovering inorganic wastes. Journal of Materials Processing Technology, 2003, 143-144, 454-457.	6.3	6
131	Effect of ductile layers in mechanical behaviour of TiAlN thin coatings. Journal of Materials Processing Technology, 2003, 143-144, 352-357.	6.3	74
132	Oxygen sensitivity of erbium-doped AlN films probed by site selective spectroscopy. Optical Materials, 2003, 24, 321-325.	3.6	13
133	Physicochemical characterization and in vitro dissolution behavior of nicardipine–cyclodextrins inclusion compounds. European Journal of Pharmaceutical Sciences, 2002, 15, 79-88.	4.0	202
134	On the evaluation of the ductility of thin films. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2002, 337, 97-103.	5.6	4
135	Influence of Al(Er) interlayer on the mechanical properties of AlN(Er) coatings. Surface and Coatings Technology, 2002, 151-152, 466-470.	4.8	15
136	The effects of a third element on structure and properties of W–C/N. Surface and Coatings Technology, 2002, 151-152, 495-504.	4.8	14
137	Synthesis and characterisation of new sputtered metastable carbides. Vacuum, 2002, 64, 205-210.	3.5	18
138	Mechanical characterisation of γ-TiAl thin films obtained by two different sputtering routes. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2002, 329-331, 147-152.	5.6	14
139	The influence of nitrogen on the mechanical behaviour of multilayered coatings. Surface and Coatings Technology, 2000, 131, 417-421.	4.8	6
140	The influence of Er doping of Al–N sputtered coatings on their mechanical properties. Surface and Coatings Technology, 2000, 132, 99-104.	4.8	9
141	An approach using thin films as a predictive way to produce new bulk materials. Surface and Coatings Technology, 2000, 131, 162-166.	4.8	2
142	Optimization of the sintering process of raw material wastes. Journal of Materials Processing Technology, 1999, 92-93, 97-101.	6.3	25
143	The influence of ductile interlayers on the mechanical performance of tungsten nitride coatings. Journal of Materials Processing Technology, 1999, 92-93, 156-161.	6.3	26
144	Title is missing!. Biotechnology Letters, 1999, 13, 595-599.	0.5	10

#	Article	IF	CITATIONS
145	Amorphous phase forming ability in(W–C)-based sputtered films. Acta Materialia, 1998, 46, 1731-1739.	7.9	31
146	The ultimate vacuum pressure and the characteristics of sputtered coatings. Thin Solid Films, 1996, 290-291, 238-242.	1.8	8
147	Tribological behaviour at elevated temperatures of thin physical vapour deposited coatings. Surface and Coatings Technology, 1996, 80, 171-175.	4.8	10
148	Influence of titanium on the structural stability of sputter-deposited W-Co-C films. Surface and Coatings Technology, 1995, 74-75, 802-805.	4.8	6
149	The role of interfacial films in the friction and wear properties of W-Co-C sputtered coatings. Thin Solid Films, 1995, 254, 131-138.	1.8	10
150	In situ high temperature crystallization study of sputter deposited amorphous Wî—,Feî—,C films. Acta Metallurgica Et Materialia, 1995, 43, 93-99.	1.8	3
151	Structural stability and crystallization studies of metastable sputtered Wî—,Niî—,C films. Thin Solid Films, 1994, 252, 82-88.	1.8	20
152	Characaterization of Wî—,Meî—,C (Meî—»Fe, Co) films and their structural behaviour with temperature. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1994, 174, 165-171.	5.6	11
153	Study of tungsten sputtered films with low nitrogen content. Vacuum, 1994, 45, 1051-1053.	3.5	24
154	Influence of the target/shield distance on the coatings deposition by rf magnetron sputtering. Vacuum, 1994, 45, 1099-1100.	3.5	0
155	EVALUATION OF HARDNESS OF SPUTTERED W–C–Co THIN FILMS. Surface Engineering, 1994, 10, 147-151.	2.2	19
156	Structural analysis of sputtered (W-C)1â^'xMx (Mî—¼Fe, Co) films with 0⩽x⩽0.20. Surface and Coatings Technology, 1993, 60, 411-415.	4.8	8
157	Production and characterization of Si-N films obtained by r.f. magnetron sputtering. Surface and Coatings Technology, 1993, 60, 463-467.	4.8	14
158	Failure modes observed on worn surfaces of W-C-Co sputtered coatings. Surface and Coatings Technology, 1993, 62, 536-542.	4.8	14
159	Characterization of a sputtered amorphous Wî—,Cî—,Co coating annealed in air. Thin Solid Films, 1993, 228, 80-86.	1.8	6
160	Structural behaviour of sputtered W-C-Co coatings at increasing temperatures. Journal of Materials Science, 1993, 28, 6096-6102.	3.7	4
161	Adhesion improvement of RF-sputtered alumina coatings as determined by the scratch test. Journal of Adhesion Science and Technology, 1993, 7, 801-811.	2.6	9
162	R.F. SPUTTERED AMORPHOUS ALUMINA COATINGS ON HIGH SPEED STEEL. Materials and Manufacturing Processes, 1992, 7, 251-269.	4.7	2

#	Article	IF	CITATIONS
163	Influence of deposition conditions on the morphology of sputtered W-C-(Co) films. Thin Solid Films, 1992, 213, 6-12.	1.8	20
164	Tribological behaviour of W-C-Co coatings. Journal of Materials Processing Technology, 1992, 31, 225-234.	6.3	6
165	Structure and chemical composition of W-C-(Co) sputtered films. Thin Solid Films, 1991, 197, 237-255.	1.8	38
166	Structural characterization of co-sputtered Wî—,Cî—,Fe films. Thin Solid Films, 1991, 206, 318-322.	1.8	9
167	Influence of deposition conditions on the adhesion of sputter-deposited Wî—,Cî—,(Co) films. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1991, 140, 631-638.	5.6	9
168	Morphology and thickness distribution of sputtered W-C-Co films deposited on differently shaped substrates. Surface and Coatings Technology, 1991, 49, 311-315.	4.8	1
169	The structure of thin films deposited from a sintered tungsten carbide with a high cobalt content (15) Tj ETQq1 1	0,784314 1.8	1 rgBT /Over
170	Chemical and optical characterization of Niî—,P spectrally selective surfaces coated by fluorocarbon films. Solar Energy Materials and Solar Cells, 1990, 20, 245-256.	0.4	5
171	Joining of Superalloys to Intermetallics Using Nanolayers. Advanced Materials Research, 0, 59, 225-229.	0.3	39
172	The Role of Composite Anisotropy in Aircraft-System Wing Movement Produced by Actuators. , 0, , .		0