List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2385509/publications.pdf Version: 2024-02-01

		18436	27345
228	13,724	62	106
papers	citations	h-index	g-index
222	222	222	14400
232	232	232	14498
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science, 2016, 354, 1414-1419.	6.0	1,292
2	New insights into PM _{2.5} chemical composition and sources in two major cities in China during extreme haze events using aerosol mass spectrometry. Atmospheric Chemistry and Physics, 2016, 16, 3207-3225.	1.9	300
3	Effect of Carbon Doping on the Mesoporous Structure of Nanocrystalline Titanium Dioxide and Its Solar-Light-Driven Photocatalytic Degradation of NO <i>_x</i> . Langmuir, 2008, 24, 3510-3516.	1.6	288
4	Copolymerization with 2,4,6-Triaminopyrimidine for the Rolling-up the Layer Structure, Tunable Electronic Properties, and Photocatalysis of g-C ₃ N ₄ . ACS Applied Materials & Interfaces, 2015, 7, 5497-5505.	4.0	264
5	Environment-Friendly Carbon Quantum Dots/ZnFe ₂ O ₄ Photocatalysts: Characterization, Biocompatibility, and Mechanisms for NO Removal. Environmental Science & Technology, 2017, 51, 2924-2933.	4.6	260
6	Removal of Indoor Volatile Organic Compounds via Photocatalytic Oxidation: A Short Review and Prospect. Molecules, 2016, 21, 56.	1.7	247
7	Colloidal Photonic Crystals with Narrow Stopbands Assembled from Low-Adhesive Superhydrophobic Substrates. Journal of the American Chemical Society, 2012, 134, 17053-17058.	6.6	215
8	Fabrication of Bi2O2CO3/g-C3N4 heterojunctions for efficiently photocatalytic NO in air removal: In-situ self-sacrificial synthesis, characterizations and mechanistic study. Applied Catalysis B: Environmental, 2016, 199, 123-133.	10.8	214
9	Roles of N-Vacancies over Porous g-C ₃ N ₄ Microtubes during Photocatalytic NO <i>_x</i> Removal. ACS Applied Materials & Interfaces, 2019, 11, 10651-10662.	4.0	210
10	Oxygen vacancy engineering of Bi2O3/Bi2O2CO3 heterojunctions: Implications of the interfacial charge transfer, NO adsorption and removal. Applied Catalysis B: Environmental, 2018, 231, 357-367.	10.8	203
11	Enhanced photocatalytic degradation of ciprofloxacin over Bi2O3/(BiO)2CO3 heterojunctions: Efficiency, kinetics, pathways, mechanisms and toxicity evaluation. Chemical Engineering Journal, 2018, 334, 453-461.	6.6	198
12	Ultrasonic Spray Pyrolysis Synthesis of Porous Bi ₂ WO ₆ Microspheres and Their Visible-Light-Induced Photocatalytic Removal of NO. Journal of Physical Chemistry C, 2010, 114, 6342-6349.	1.5	195
13	Characteristics and health impacts of VOCs and carbonyls associated with residential cooking activities in Hong Kong. Journal of Hazardous Materials, 2011, 186, 344-351.	6.5	188
14	A Switchable Cross‧pecies Liquid Repellent Surface. Advanced Materials, 2017, 29, 1604641.	11.1	186
15	Highly efficient (BiO)2CO3-BiO2-x-graphene photocatalysts: Z-Scheme photocatalytic mechanism for their enhanced photocatalytic removal of NO. Applied Catalysis B: Environmental, 2019, 240, 241-252.	10.8	180
16	Heterogeneous activation of peroxymonosulfate by LaFeO3 for diclofenac degradation: DFT-assisted mechanistic study and degradation pathways. Chemical Engineering Journal, 2018, 352, 601-611.	6.6	172
17	Biomolecule-controlled hydrothermal synthesis of C–N–S-tridoped TiO2 nanocrystalline photocatalysts for NO removal under simulated solar light irradiation. Journal of Hazardous Materials, 2009, 169, 77-87.	6.5	168
18	Synthesis of a Bi2O2CO3/ZnFe2O4 heterojunction with enhanced photocatalytic activity for visible light irradiation-induced NO removal. Applied Catalysis B: Environmental, 2018, 234, 70-78.	10.8	167

#	Article	IF	CITATIONS
19	Self-assembly synthesis of boron-doped graphitic carbon nitride hollow tubes for enhanced photocatalytic NOx removal under visible light. Applied Catalysis B: Environmental, 2018, 239, 352-361.	10.8	154
20	Rose-like monodisperse bismuth subcarbonate hierarchical hollow microspheres: One-pot template-free fabrication and excellent visible light photocatalytic activity and photochemical stability for NO removal in indoor air. Journal of Hazardous Materials, 2011, 195, 346-354.	6.5	151
21	Monoclinic α-Bi2O3 photocatalyst for efficient removal of gaseous NO and HCHO under visible light irradiation. Journal of Alloys and Compounds, 2011, 509, 2044-2049.	2.8	149
22	Spatial and seasonal variations of PM 2.5 mass and species during 2010 in Xi'an, China. Science of the Total Environment, 2015, 508, 477-487.	3.9	149
23	A Multiâ€stopband Photonicâ€Crystal Microchip for Highâ€Performance Metalâ€Ion Recognition Based on Fluorescent Detection. Angewandte Chemie - International Edition, 2013, 52, 7296-7299.	7.2	146
24	Post-plasma-catalytic removal of toluene using MnO2–Co3O4 catalysts and their synergistic mechanism. Chemical Engineering Journal, 2018, 348, 15-25.	6.6	146
25	Template-free fabrication and growth mechanism of uniform (BiO)2CO3 hierarchical hollow microspheres with outstanding photocatalytic activities under both UV and visible light irradiation. Journal of Materials Chemistry, 2011, 21, 12428.	6.7	142
26	A Rainbow Structuralâ€Color Chip for Multisaccharide Recognition. Angewandte Chemie - International Edition, 2016, 55, 6911-6914.	7.2	138
27	Visible-Light-Active Plasmonic Ag–SrTiO ₃ Nanocomposites for the Degradation of NO in Air with High Selectivity. ACS Applied Materials & Interfaces, 2016, 8, 4165-4174.	4.0	132
28	Enhanced visible-light-driven photocatalytic removal of NO: Effect on layer distortion on g-C3N4 by H2 heating. Applied Catalysis B: Environmental, 2015, 179, 106-112.	10.8	131
29	Perovskite LaFeO3-SrTiO3 composite for synergistically enhanced NO removal under visible light excitation. Applied Catalysis B: Environmental, 2017, 204, 346-357.	10.8	127
30	Biocompatible FeOOH-Carbon quantum dots nanocomposites for gaseous NO removal under visible light: Improved charge separation and High selectivity. Journal of Hazardous Materials, 2018, 354, 54-62.	6.5	126
31	Photochromic sensors: a versatile approach for recognition and discrimination. Journal of Materials Chemistry C, 2015, 3, 9265-9275.	2.7	122
32	Protonated g-C3N4/Ti3+ self-doped TiO2 nanocomposite films: Room-temperature preparation, hydrophilicity, and application for photocatalytic NO removal. Applied Catalysis B: Environmental, 2019, 240, 122-131.	10.8	122
33	Atmospheric levels and cytotoxicity of polycyclic aromatic hydrocarbons and oxygenated-PAHs in PM2.5 in the Beijing-Tianjin-Hebei region. Environmental Pollution, 2017, 231, 1075-1084.	3.7	119
34	Characterizations of volatile organic compounds (VOCs) from vehicular emissions at roadside environment: The first comprehensive study in Northwestern China. Atmospheric Environment, 2017, 161, 1-12.	1.9	112
35	Synergistically boosting highly selective CO2–to–CO photoreduction over BiOCl nanosheets via in-situ formation of surface defects and non-precious metal nanoparticles. Applied Catalysis B: Environmental, 2021, 297, 120413.	10.8	112
36	PM2.5 and PM10-2.5 chemical composition and source apportionment near a Hong Kong roadway. Particuology, 2015, 18, 96-104.	2.0	109

#	Article	IF	CITATIONS
37	Particulate matters emitted from maize straw burning for winter heating in rural areas in Guanzhong Plain, China: Current emission and future reduction. Atmospheric Research, 2017, 184, 66-76.	1.8	109
38	Chemical profiles of urban fugitive dust PM2.5 samples in Northern Chinese cities. Science of the Total Environment, 2016, 569-570, 619-626.	3.9	104
39	Aerosol-assisted flow synthesis of B-doped, Ni-doped and B–Ni-codoped TiO2 solid and hollow microspheres for photocatalytic removal of NO. Applied Catalysis B: Environmental, 2009, 89, 398-405.	10.8	102
40	Ultra-antireflective synthetic brochosomes. Nature Communications, 2017, 8, 1285.	5.8	101
41	In-situ generation of oxygen vacancies and metallic bismuth from (BiO)2CO3 via N2-assisted thermal-treatment for efficient selective photocatalytic NO removal. Applied Catalysis B: Environmental, 2021, 281, 119481.	10.8	97
42	Improved Oxygen Activation over a Carbon/Co ₃ O ₄ Nanocomposite for Efficient Catalytic Oxidation of Formaldehyde at Room Temperature. Environmental Science & Technology, 2021, 55, 4054-4063.	4.6	97
43	Controllable Underwater Oilâ€Adhesionâ€Interface Films Assembled from Nonspherical Particles. Advanced Functional Materials, 2011, 21, 4436-4441.	7.8	96
44	Optical properties and possible sources of brown carbon in PM 2.5 over Xi'an, China. Atmospheric Environment, 2017, 150, 322-330.	1.9	96
45	Oxygen vacancy defects-boosted deep oxidation of NO by β-Bi2O3/CeO2-δ p-n heterojunction photocatalyst in situ synthesized from Bi/Ce(CO3)(OH) precursor. Chemical Engineering Journal, 2021, 424, 130327.	6.6	96
46	Maximizing the Formation of Reactive Oxygen Species for Deep Oxidation of NO via Manipulating the Oxygen-Vacancy Defect Position on (BiO) ₂ CO ₃ . ACS Catalysis, 2021, 11, 7735-7749.	5.5	94
47	In situ construction of biocompatible Z-scheme α-Bi2O3/CuBi2O4 heterojunction for NO removal under visible light. Applied Catalysis B: Environmental, 2020, 272, 119008.	10.8	93
48	Uniform Zn ²⁺ -Doped BiOI Microspheres Assembled by Ultrathin Nanosheets with Tunable Oxygen Vacancies for Super-Stable Removal of NO. Journal of Physical Chemistry C, 2019, 123, 16268-16280.	1.5	91
49	Inkjet printed colloidal photonic crystal microdot with fast response induced by hydrophobic transition of poly(N-isopropyl acrylamide). Journal of Materials Chemistry, 2012, 22, 21405.	6.7	89
50	Plasmonic Bi/ZnWO ₄ Microspheres with Improved Photocatalytic Activity on NO Removal under Visible Light. ACS Sustainable Chemistry and Engineering, 2016, 4, 6912-6920.	3.2	88
51	Oxygen vacancy–engineered Β-MnO /activated carbon for room-temperature catalytic oxidation of formaldehyde. Applied Catalysis B: Environmental, 2020, 278, 119294.	10.8	87
52	External Stimuli Responsive Liquidâ€Infused Surfaces Switching between Slippery and Nonslippery States: Fabrications and Applications. Advanced Functional Materials, 2020, 30, 1901130.	7.8	80
53	Coreâ~'Shell Microspherical Ti1-xZrxO2 Solid Solution Photocatalysts Directly from Ultrasonic Spray Pyrolysis. Journal of Physical Chemistry B, 2006, 110, 19323-19328.	1.2	79
54	Novel Au/La-Bi ₅ O ₇ I Microspheres with Efficient Visible-Light Photocatalytic Activity for NO Removal: Synergistic Effect of Au Nanoparticles, La Doping, and Oxygen Vacancy. ACS Applied Materials & Interfaces, 2019, 11, 37822-37832.	4.0	78

#	Article	IF	CITATIONS
55	Photocatalytic removal of NO and HCHO over nanocrystalline Zn2SnO4 microcubes for indoor air purification. Journal of Hazardous Materials, 2010, 179, 141-150.	6.5	75
56	Large-area crack-free single-crystal photonic crystals via combined effects of polymerization-assisted assembly and flexible substrate. NPG Asia Materials, 2012, 4, e21-e21.	3.8	74
57	The deep oxidation of NO was realized by Sr multi-site doped g-C3N4 via photocatalytic method. Applied Catalysis B: Environmental, 2019, 256, 117825.	10.8	74
58	A critical review on plasma-catalytic removal of VOCs: Catalyst development, process parameters and synergetic reaction mechanism. Science of the Total Environment, 2022, 828, 154290.	3.9	70
59	Prewetting dichloromethane induced aqueous solution adhered on Cassie superhydrophobic substrates to fabricate efficient fog-harvesting materials inspired by Namib Desert beetles and mussels. Nanoscale, 2018, 10, 13045-13054.	2.8	68
60	Fabrication of functional colloidal photonic crystals based on well-designed latex particles. Journal of Materials Chemistry, 2011, 21, 14113.	6.7	67
61	Controllable Synthesis of Core–Shell Bi@Amorphous Bi ₂ O ₃ Nanospheres with Tunable Optical and Photocatalytic Activity for NO Removal. Industrial & Engineering Chemistry Research, 2017, 56, 10251-10258.	1.8	66
62	Composite ZIF-8 with CQDs for boosting visible-light-driven photocatalytic removal of NO. Journal of Alloys and Compounds, 2019, 802, 467-476.	2.8	66
63	In situ Fabrication of α-Bi2O3/(BiO)2CO3 Nanoplate Heterojunctions with Tunable Optical Property and Photocatalytic Activity. Scientific Reports, 2016, 6, 23435.	1.6	65
64	Characterization of volatile organic compounds at a roadside environment in Hong Kong: An investigation of influences after air pollution control strategies. Atmospheric Environment, 2015, 122, 809-818.	1.9	64
65	Constructing Z-scheme SnO ₂ /N-doped carbon quantum dots/ZnSn(OH) ₆ nanohybrids with high redox ability for NO <i>x</i> removal under VIS-NIR light. Journal of Materials Chemistry A, 2019, 7, 15782-15793.	5.2	60
66	Photocatalytic Nitrogen Oxide Removal Activity Improved Step-by-Step through Serial Multistep Cu Modifications. ACS Applied Materials & Interfaces, 2019, 11, 10042-10051.	4.0	60
67	Highly Selective Photocatalytic CO ₂ Methanation with Water Vapor on Singleâ€Atom Platinumâ€Decorated Defective Carbon Nitride. Angewandte Chemie - International Edition, 2022, 61, .	7.2	60
68	Hierarchical porous ZnWO4 microspheres synthesized by ultrasonic spray pyrolysis: Characterization, mechanistic and photocatalytic NO removal studies. Applied Catalysis A: General, 2016, 515, 170-178.	2.2	59
69	Recent Advances in Photocatalysis Based on Bioinspired Superwettabilities. ACS Catalysis, 2021, 11, 14751-14771.	5.5	59
70	Simulation and optimization of the post plasma-catalytic system for toluene degradation by a hybrid ANN and NSGA-II method. Applied Catalysis B: Environmental, 2019, 244, 107-119.	10.8	57
71	Evaluation and characterization of volatile air toxics indoors in a heavy polluted city of northwestern China in wintertime. Science of the Total Environment, 2019, 662, 470-480.	3.9	56
72	Effects of H2O2 generation over visible light-responsive Bi/Bi2O2â^'CO3 nanosheets on their photocatalytic NO removal performance. Chemical Engineering Journal, 2019, 363, 374-382.	6.6	56

#	Article	IF	CITATIONS
73	Characterization of PM2.5 source profiles from typical biomass burning of maize straw, wheat straw, wood branch, and their processed products (briquette and charcoal) in China. Atmospheric Environment, 2019, 205, 36-45.	1.9	55
74	An anti-UV superhydrophobic material with photocatalysis, self-cleaning, self-healing and oil/water separation functions. Nanoscale, 2020, 12, 11455-11459.	2.8	55
75	<i>In situ</i> g-C ₃ N ₄ self-sacrificial synthesis of a g-C ₃ N ₄ /LaCO ₃ OH heterostructure with strong interfacial charge transfer and separation for photocatalytic NO removal. Journal of Materials Chemistry A, 2018, 6, 972-981.	5.2	54
76	On the use of an explicit chemical mechanism to dissect peroxy acetyl nitrate formation. Environmental Pollution, 2014, 195, 39-47.	3.7	53
77	Microscopic Observation of Metal-Containing Particles from Chinese Continental Outflow Observed from a Non-Industrial Site. Environmental Science & Technology, 2013, 47, 9124-9131.	4.6	52
78	Enhanced photocatalytic removal of NO over titania/hydroxyapatite (TiO ₂ /HAp) composites with improved adsorption and charge mobility ability. RSC Advances, 2017, 7, 24683-24689.	1.7	52
79	Cobalt nanoparticles encapsulated in porous nitrogen-doped carbon: Oxygen activation and efficient catalytic removal of formaldehyde at room temperature. Applied Catalysis B: Environmental, 2019, 258, 117981.	10.8	52
80	Decrease of VOC emissions from vehicular emissions in Hong Kong from 2003 to 2015: Results from a tunnel study. Atmospheric Environment, 2018, 177, 64-74.	1.9	51
81	Visible-light-driven N-(BiO) 2 CO 3 /Graphene oxide composites with improved photocatalytic activity and selectivity for NO x removal. Applied Surface Science, 2018, 430, 137-144.	3.1	51
82	Chemical etching fabrication of uniform mesoporous Bi@Bi2O3 nanospheres with enhanced visible light-induced photocatalytic oxidation performance for NOx. Chemical Engineering Journal, 2021, 406, 126910.	6.6	51
83	Temperature-Driven Precise Control of Biological Droplet's Adhesion on a Slippery Surface. ACS Applied Materials & Interfaces, 2019, 11, 7591-7599.	4.0	50
84	A Photochromic Sensor Microchip for High-performance Multiplex Metal Ions Detection. Scientific Reports, 2015, 5, 9724.	1.6	49
85	Enhanced peroxymonosulfate activation by Cu-doped LaFeO3 with rich oxygen vacancies: Compound-specific mechanisms. Chemical Engineering Journal, 2022, 435, 134882.	6.6	48
86	Printable Functional Chips Based on Nanoparticle Assembly. Small, 2017, 13, 1503339.	5.2	47
87	Source apportionment of VOCs and their impacts on surface ozone in an industry city of Baoji, Northwestern China. Scientific Reports, 2017, 7, 9979.	1.6	47
88	Controllable Synthesis of Latex Particles with Multicavity Structures. Macromolecules, 2011, 44, 2404-2409.	2.2	46
89	Synthesis of SrFexTi1-xO3-δ nanocubes with tunable oxygen vacancies for selective and efficient photocatalytic NO oxidation. Applied Catalysis B: Environmental, 2018, 239, 1-9.	10.8	46
90	Urban VOC profiles, possible sources, and its role in ozone formation for a summer campaign over Xi'an, China. Environmental Science and Pollution Research, 2019, 26, 27769-27782.	2.7	46

#	Article	lF	CITATIONS
91	Carbonyl emissions from vehicular exhausts sources in Hong Kong. Journal of the Air and Waste Management Association, 2012, 62, 221-234.	0.9	45
92	Salt-assisted Synthesis of Hollow Bi 2 WO 6 Microspheres with Superior Photocatalytic Activity for NO Removal. Chinese Journal of Catalysis, 2017, 38, 348-356.	6.9	45
93	Ultrasonic Spray Pyrolysis Fabrication of Solid and Hollow PbWO ₄ Spheres with Structure-Directed Photocatalytic Activity. Journal of Physical Chemistry C, 2011, 115, 241-247.	1.5	43
94	Biomacromoleculeâ€Functionalized AIEgens for Advanced Biomedical Studies. Small, 2019, 15, 1804839.	5.2	43
95	Characteristics of atmospheric PM2.5 composition during the implementation of stringent pollution control measures in shanghai for the 2016 G20 summit. Science of the Total Environment, 2019, 648, 1121-1129.	3.9	42
96	Indoor Air Pollution Levels in Decorated Residences and Public Places over Xi'an, China. Aerosol and Air Quality Research, 2017, 17, 2197-2205.	0.9	42
97	Seasonal variation, spatial distribution and source apportionment for polycyclic aromatic hydrocarbons (PAHs) at nineteen communities in Xi'an, China: The effects of suburban scattered emissions in winter. Environmental Pollution, 2017, 231, 1330-1343.	3.7	41
98	All-polymer solar cells based on a blend of poly[3-(10-n-octyl-3-phenothiazine-vinylene)thiophene-co-2,5-thiophene] and poly[1,4-dioctyloxyl-p-2,5-dicyanophenylenevinylene]. Applied Physics Letters, 2009, 94, 193302.	1.5	40
99	Measuring OVOCs and VOCs by PTR-MS in an urban roadside microenvironment of Hong Kong: relative humidity and temperature dependence, and field intercomparisons. Atmospheric Measurement Techniques, 2016, 9, 5763-5779.	1.2	40
100	Integration of water collection and purification on cactus- and beetle-inspired eco-friendly superwettable materials. Water Research, 2021, 206, 117759.	5.3	40
101	Nanomaterials for Airborne Virus Inactivation: A Short Review. Aerosol Science and Engineering, 2021, 5, 1-11.	1.1	39
102	Twenty Natural Amino Acids Identification by a Photochromic Sensor Chip. Analytical Chemistry, 2015, 87, 837-842.	3.2	38
103	Characterization and health risk assessment of airborne pollutants in commercial restaurants in northwestern China: Under a low ventilation condition in wintertime. Science of the Total Environment, 2018, 633, 308-316.	3.9	38
104	High Selectivity of Visible-Light-Driven La-doped TiO2 Photocatalysts for NO Removal. Aerosol and Air Quality Research, 2017, 17, 2555-2565.	0.9	38
105	Active Complexes on Engineered Crystal Facets of MnO _x –CeO ₂ and Scale-Up Demonstration on an Air Cleaner for Indoor Formaldehyde Removal. Environmental Science & Technology, 2019, 53, 10906-10916.	4.6	36
106	Volatile organic compounds from residential solid fuel burning in Guanzhong Plain, China: Source-related profiles and risks. Chemosphere, 2019, 221, 184-192.	4.2	36
107	Improved photocatalytic activity of BaTiO3/La2Ti2O7 heterojunction composites via piezoelectric-enhanced charge transfer. Applied Surface Science, 2021, 570, 151146.	3.1	36
108	Characteristics of Residential Indoor Carbonaceous Aerosols: A Case Study in Guangzhou, Pearl River Delta Region. Aerosol and Air Quality Research, 2010, 10, 472-478.	0.9	35

#	Article	IF	CITATIONS
109	Transformation of amorphous Bi2O3 to crystal Bi2O2CO3 on Bi nanospheres surface for photocatalytic NOx oxidation: Intensified hot-electron transfer and reactive oxygen species generation. Chemical Engineering Journal, 2021, 420, 129814.	6.6	35
110	Insight into the Photocatalytic Removal of NO in Air over Nanocrystalline Bi ₂ Sn ₂ O ₇ under Simulated Solar Light. Industrial & Engineering Chemistry Research, 2016, 55, 10609-10617.	1.8	34
111	Impact of primary and secondary air supply intensity in stove on emissions of size-segregated particulate matter and carbonaceous aerosols from apple tree wood burning. Atmospheric Research, 2018, 202, 33-39.	1.8	34
112	Effect of ammonia on ozone-initiated formation of indoor secondary products with emissions from cleaning products. Atmospheric Environment, 2012, 59, 224-231.	1.9	33
113	Bioinspired superwetting surfaces for biosensing. View, 2021, 2, 20200053.	2.7	33
114	Interface Manipulation for Printing Threeâ€Dimensional Microstructures Under Magnetic Guiding. Small, 2015, 11, 1900-1904.	5.2	32
115	Visible-Light-Driven Nitrogen-Doped Carbon Quantum Dots/CaTiO ₃ Composite Catalyst with Enhanced NO Adsorption for NO Removal. Industrial & Engineering Chemistry Research, 2018, 57, 10226-10233.	1.8	32
116	Distribution of airborne SARS-CoV-2 and possible aerosol transmission in Wuhan hospitals, China. National Science Review, 2020, 7, 1865-1867.	4.6	32
117	Synthesis and characterization of Bi-BiPO4 nanocomposites as plasmonic photocatalysts for oxidative NO removal. Applied Surface Science, 2020, 513, 145775.	3.1	32
118	An Environmental Chamber Study of the Characteristics of Air Pollutants Released from Environmental Tobacco Smoke. Aerosol and Air Quality Research, 2012, 12, 1269-1281.	0.9	32
119	A Rainbow Structural olor Chip for Multisaccharide Recognition. Angewandte Chemie, 2016, 128, 7025-7028.	1.6	31
120	Influences of relative humidities and temperatures on the collection of C2-C5 aliphatic hydrocarbons with multi-bed (Tenax TA, Carbograph 1TD, Carboxen 1003) sorbent tube method. Atmospheric Environment, 2017, 151, 45-51.	1.9	31
121	Chemical characterization and source apportionment of size-resolved particles in Hong Kong sub-urban area. Atmospheric Research, 2016, 170, 112-122.	1.8	29
122	Spider-web inspired multi-resolution graphene tactile sensor. Chemical Communications, 2018, 54, 4810-4813.	2.2	29
123	Recent progress on two-dimensional materials confining single atoms for CO2 photoreduction. Chinese Chemical Letters, 2022, 33, 5023-5029.	4.8	28
124	Anchoring Platinum Clusters onto Oxygen Vacancy-Modified In ₂ O ₃ for Ultraefficient, Low-Temperature, Highly Sensitive, and Stable Detection of Formaldehyde. ACS Sensors, 2022, 7, 1201-1212.	4.0	28
125	Polythiophene Derivative with the Simplest Conjugated-Side-Chain of Alkenyl: Synthesis and Applications in Polymer Solar Cells and Field-Effect Transistors. Journal of Physical Chemistry B, 2008, 112, 13476-13482.	1.2	27
126	Incorporation of Thienylenevinylene and Triphenylamine Moieties into Polythiophene Side Chains for All-Polymer Photovoltaic Applications. Journal of Physical Chemistry C, 2009, 113, 5879-5885.	1.5	27

#	Article	IF	CITATIONS
127	Physical parameters effect on ozone-initiated formation of indoor secondary organic aerosols with emissions from cleaning products. Journal of Hazardous Materials, 2011, 192, 1787-1794.	6.5	27
128	Molecular Absorption and Evolution Mechanisms of PM _{2.5} Brown Carbon Revealed by Electrospray Ionization Fourier Transform–Ion Cyclotron Resonance Mass Spectrometry During a Severe Winter Pollution Episode in Xi'an, China. Geophysical Research Letters, 2020, 47, e2020GL087977.	1.5	27
129	Urban-scale SALSCS, Part I: Experimental Evaluation and Numerical Modeling of a Demonstration Unit. Aerosol and Air Quality Research, 2018, 18, 2865-2878.	0.9	27
130	Optical properties of size-resolved particles at a Hong Kong urban site during winter. Atmospheric Research, 2015, 155, 1-12.	1.8	26
131	Indoor secondary organic aerosols formation from ozonolysis of monoterpene: An example of d-limonene with ammonia and potential impacts on pulmonary inflammations. Science of the Total Environment, 2017, 579, 212-220.	3.9	26
132	Aggregation-induced emission luminogens for RONS sensing. Journal of Materials Chemistry B, 2020, 8, 3357-3370.	2.9	26
133	Novel N/Carbon Quantum Dot Modified MIL-125(Ti) Composite for Enhanced Visible-Light Photocatalytic Removal of NO. Industrial & Engineering Chemistry Research, 2020, 59, 6470-6478.	1.8	26
134	A universal, multifunctional, high-practicability superhydrophobic paint for waterproofing grass houses. NPG Asia Materials, 2021, 13, .	3.8	26
135	Characterization of biogenic volatile organic compounds (BVOCs) in cleaning reagents and air fresheners in Hong Kong. Atmospheric Environment, 2011, 45, 6191-6196.	1.9	25
136	Risk Assessment of Indoor Formaldehyde and Other Carbonyls in Campus Environments in Northwestern China. Aerosol and Air Quality Research, 2016, 16, 1967-1980.	0.9	25
137	Characterization of polycyclic aromatic hydrocarbon (PAHs) source profiles in urban PM2.5 fugitive dust: A large-scale study for 20 Chinese cites. Science of the Total Environment, 2019, 687, 188-197.	3.9	25
138	Mn-Based Catalysts for Post Non-Thermal Plasma Catalytic Abatement of VOCs: A Review on Experiments, Simulations and Modeling. Plasma Chemistry and Plasma Processing, 2021, 41, 1239-1278.	1.1	25
139	Controllable synthesis of phosphate-modified BiPO ₄ nanorods with high photocatalytic activity: surface hydroxyl groups concentrations effects. RSC Advances, 2015, 5, 99712-99721.	1.7	24
140	Post Plasma Catalysis for the Removal of Acetaldehyde Using Mn–Co/HZSM-5 Catalysts. Industrial & Engineering Chemistry Research, 2019, 58, 14719-14728.	1.8	23
141	Exploring a broadened operating pH range for norfloxacin removal via simulated solar-light-mediated Bi2WO6 process. Chinese Journal of Catalysis, 2019, 40, 673-680.	6.9	23
142	Mechanistic and kinetics investigations of oligomer formation from Criegee intermediate reactions with hydroxyalkyl hydroperoxides. Atmospheric Chemistry and Physics, 2019, 19, 4075-4091.	1.9	23
143	g ₃ N ₄ /TiO ₂ Composite Film in the Fabrication of a Photocatalytic Airâ€Purifying Pavements. Solar Rrl, 2020, 4, 2000170.	3.1	23
144	Enhancement of photocatalytic NO removal activity of g-C ₃ N ₄ by modification with illite particles. Environmental Science: Nano, 2020, 7, 1990-1998.	2.2	23

#	Article	IF	CITATIONS
145	A Diverse Micromorphology of Photonic Crystal Chips for Multianalyte Sensing. Small, 2021, 17, e2006723.	5.2	23
146	Optimization and evaluation of multi-bed adsorbent tube method in collection of volatile organic compounds. Atmospheric Research, 2018, 202, 187-195.	1.8	22
147	Exploring the photocatalytic conversion mechanism of gaseous formaldehyde degradation on TiO2–-OV surface. Journal of Hazardous Materials, 2022, 424, 127217.	6.5	22
148	Competition between HO ₂ and H ₂ O ₂ Reactions with CH ₂ OO/ <i>anti</i> -CH ₃ CHOO in the Oligomer Formation: A Theoretical Perspective. Journal of Physical Chemistry A, 2017, 121, 6981-6991.	1.1	21
149	Unraveling the mechanisms of room-temperature catalytic degradation of indoor formaldehyde and its biocompatibility on colloidal TiO ₂ -supported MnO _x –CeO ₂ . Environmental Science: Nano, 2018, 5, 1130-1139.	2.2	21
150	Chemical source profiles of particulate matter and gases emitted from solid fuels for residential cooking and heating scenarios in Qinghai-Tibetan Plateau. Environmental Pollution, 2021, 285, 117503.	3.7	21
151	Evaluation of Indoor Air Pollution during Decorating Process and Inhalation Health Risks in Xi'an, China: A Case Study. Aerosol and Air Quality Research, 2019, 19, 854-864.	0.9	21
152	Characterisation of Volatile Organic Compounds at Hotels in Southern China. Indoor and Built Environment, 2011, 20, 420-429.	1.5	20
153	Characterization of chemical components and cytotoxicity effects of indoor and outdoor fine particulate matter (PM2.5) in Xi'an, China. Environmental Science and Pollution Research, 2019, 26, 31913-31923.	2.7	20
154	Revealing DeNOx and DeVOC Reactions via the Study of the Surface and Bandstructure of ZnSn(OH)6 Photocatalysts. Acta Materialia, 2021, 215, 117068.	3.8	20
155	Achieving rapid response and high sensitivity in ethanol gas sensing using a Pt/W18O49 ohmic contact via modulating the adsorption and activation properties: Theoretical and experimental insights. Sensors and Actuators B: Chemical, 2021, 347, 130601.	4.0	20
156	Bioinspired Synergy Sensor Chip of Photonic Crystals-Graphene Oxide for Multiamines Recognition. Analytical Chemistry, 2018, 90, 6371-6375.	3.2	19
157	The mechanism of room temperature catalytic C–H dissociation and oxygenation of formaldehyde over nano-zirconia phase-junction. Chemical Engineering Journal, 2020, 380, 122498.	6.6	19
158	Coral-Shaped TiO _{2â^î^} Decorated with Carbon Quantum Dots and Carbon Nanotubes for NO Removal. ACS Applied Nano Materials, 2021, 4, 7330-7342.	2.4	19
159	Constructing Pd/ferroelectric Bi4Ti3O12 nanoflake interfaces for O2 activation and boosting NO photo-oxidation. Applied Catalysis B: Environmental, 2022, 302, 120876.	10.8	19
160	Tunning Intermolecular Interaction of Peptide-Conjugated AlEgen in Nano-Confined Space for Quantitative Detection of Tumor Marker Secreted from Cells. Analytical Chemistry, 2021, 93, 16257-16263.	3.2	19
161	The excellent photocatalytic NO removal performance relates to the synergistic effect between the prepositive NaOH solution and the g-C3N4 photocatalysis. Environmental Research, 2022, 212, 113405.	3.7	19
162	Bioinspired Slippery Lubricant-Infused Surfaces With External Stimuli Responsive Wettability: A Mini Review. Frontiers in Chemistry, 2019, 7, 826.	1.8	18

#	Article	IF	CITATIONS
163	Process optimization of plasma-catalytic formaldehyde removal using MnOx–Fe2O3 catalysts by response surface methodology. Journal of Environmental Chemical Engineering, 2021, 9, 105773.	3.3	18
164	Highly Selective Photocatalytic CO ₂ Methanation with Water Vapor on Singleâ€Atom Platinumâ€Decorated Defective Carbon Nitride. Angewandte Chemie, 2022, 134, .	1.6	18
165	Effect of oligomerization reactions of Criegee intermediate with organic acid/peroxy radical on secondary organic aerosol formation from isoprene ozonolysis. Atmospheric Environment, 2018, 187, 218-229.	1.9	17
166	Origin and transformation of ambient volatile organic compounds during a dust-to-haze episode in northwest China. Atmospheric Chemistry and Physics, 2020, 20, 5425-5436.	1.9	17
167	Oxygen vacancy engineering of photocatalytic nanomaterials for enrichment, activation, and efficient removal of nitrogen oxides with high selectivity: a review. Environmental Chemistry Letters, 2022, 20, 3905-3925.	8.3	17
168	A Review of Co3O4-based Catalysts for Formaldehyde Oxidation at Low Temperature: Effect Parameters and Reaction Mechanism. Aerosol Science and Engineering, 2020, 4, 147-168.	1.1	16
169	The characteristics and sources of roadside VOCs in Hong Kong: Effect of the LPG catalytic converter replacement programme. Science of the Total Environment, 2021, 757, 143811.	3.9	15
170	Enhancement of UV-assisted TiO2 degradation of ibuprofen using Fenton hybrid process at circumneutral pH. Chinese Journal of Catalysis, 2018, 39, 701-709.	6.9	14
171	Effects of indoor activities and outdoor penetration on PM2.5 and associated organic/elemental carbon at residential homes in four Chinese cities during winter. Science of the Total Environment, 2020, 739, 139684.	3.9	14
172	Formaldehyde Oxidation over Co@N-Doped Carbon at Room Temperature: Tunable Co Size and Intensified Surface Electron Density. ACS ES&T Engineering, 2021, 1, 917-927.	3.7	14
173	Real-Time Characterization of Particle-Bound Polycyclic Aromatic Hydrocarbons at a Heavily Trafficked Roadside Site. Aerosol and Air Quality Research, 2012, 12, 1181-1188.	0.9	14
174	Interfacial dependent reactive oxygen species generation over Pt-ZrO2 nanoparticles for catalytic oxidation of formaldehyde at room temperature. Applied Surface Science, 2022, 600, 154056.	3.1	14
175	Ambient Air Purification by Nanotechnologies: From Theory to Application. Catalysts, 2021, 11, 1276.	1.6	13
176	An orthogonal dual-regulation strategy for sensitive biosensing applications. National Science Review, 2022, 9, .	4.6	13
177	Characterization and health risk assessment of PM2.5-bound organics inside and outside of Chinese smoking lounges. Chemosphere, 2017, 186, 438-445.	4.2	12
178	Comparison of cytotoxicity induced by PM2.5-bound polycyclic aromatic compounds from different environments in Xi'an, China. Atmospheric Environment, 2019, 216, 116929.	1.9	12
179	Characterization of particle size distributions during winter haze episodes in urban air. Atmospheric Research, 2019, 228, 55-67.	1.8	12
180	Low-temperature Fe–MnO ₂ nanotube catalysts for the selective catalytic reduction of NO _{<i>x</i>xxx} with NH ₃ . Catalysis Science and Technology, 2021, 11, 6553-6563.	2.1	12

#	Article	IF	CITATIONS
181	Ozone Gas Inhibits SARS-CoV-2 Transmission and Provides Possible Control Measures. Aerosol Science and Engineering, 2021, 5, 516-523.	1.1	12
182	Slower than expected reduction in annual PM2.5 in Xi'an revealed by machine learning-based meteorological normalization. Science of the Total Environment, 2022, 841, 156740.	3.9	12
183	Ultrasonic spray pyrolysis synthesis and visible light activity of carbon-doped Ti0.91Zr0.09O2 solid solution photocatalysts. Materials Chemistry and Physics, 2009, 114, 235-241.	2.0	11
184	Seasonal variations of C1-C4 alkyl nitrates at a coastal site in Hong Kong: Influence of photochemical formation and oceanic emissions. Chemosphere, 2018, 194, 275-284.	4.2	11
185	Oxygen vacancy-dependent photocatalytic activity of well-defined Bi ₂ Sn ₂ O _{7â^²x} hollow nanocubes for NO _x removal. Environmental Science: Nano, 2021, 8, 1927-1933.	2.2	11
186	FeCo alloy encased in nitrogen-doped carbon for efficient formaldehyde removal: Preparation, electronic structure, and d-band center tailoring. Journal of Hazardous Materials, 2022, 424, 127593.	6.5	11
187	Photocatalytic reactive oxygen species generation activity of TiO ₂ improved by the modification of persistent free radicals. Environmental Science: Nano, 2021, 8, 3846-3854.	2.2	11
188	In Situ Intermediates Determination and Cytotoxicological Assessment in Catalytic Oxidation of Formaldehyde: Implications for Catalyst Design and Selectivity Enhancement under Ambient Conditions. Environmental Science & Technology, 2019, 53, 5230-5240.	4.6	10
189	Tuning the nitrogen contents in carbon matrix encapsulating Co nanoparticles for promoting formaldehyde removal through Mott-Schottky effect. Applied Surface Science, 2022, 583, 152552.	3.1	10
190	Particle Counts and Size Distributions in the Roadside Environment. Indoor and Built Environment, 2012, 21, 633-641.	1.5	9
191	Enhanced near-visible-light photocatalytic removal of formaldehyde over Au-assisted ZnSn(OH)6 microcubes. Environmental Technology and Innovation, 2020, 20, 101112.	3.0	9
192	Study on mitigation of automobile exhaust pollution in an urban street canyon: Emission reduction and air cleaning street lamps. Building and Environment, 2021, 193, 107651.	3.0	9
193	Upward trend and formation of surface ozone in the Guanzhong Basin, Northwest China. Journal of Hazardous Materials, 2022, 427, 128175.	6.5	9
194	Evaluation of hazardous airborne carbonyls in five urban roadside dwellings: A comprehensive indoor air assessment in Sri Lanka. Atmospheric Pollution Research, 2018, 9, 270-277.	1.8	8
195	Profiles and Source Apportionment of Nonmethane Volatile Organic Compounds in Winter and Summer in Xi'an, China, based on the Hybrid Environmental Receptor Model. Advances in Atmospheric Sciences, 2021, 38, 116-131.	1.9	8
196	Challenges on field monitoring of indoor air quality in china. Indoor and Built Environment, 2017, 26, 576-584.	1.5	7
197	Effect of electron structure on the catalytic activity of LaCoO ₃ perovskite towards toluene oxidation. Chemical Communications, 2022, 58, 4731-4734.	2.2	7
198	Optimization of solid-phase microextraction (SPME) to determine airborne biogenic volatile organic compounds (BVOCs): An application for measurement of household cleaning products. Analytical Methods, 2012, 4, 277-283.	1.3	6

#	Article	IF	CITATIONS
199	Three-Dimensional Bi \$\$_{5}\$\$ 5 O \$\$_{7}\$\$ 7 I Photocatalysts for Efficient Removal of NO in Air Under Visible Light. Aerosol Science and Engineering, 2017, 1, 33-40.	1.1	6
200	Optical property variations from a precursor (isoprene) to its atmospheric oxidation products. Atmospheric Environment, 2018, 193, 198-204.	1.9	6
201	A novel 3DOM Ti3+ self-doped TiO2 for photocatalytic removal of NO. Chemical Physics Letters, 2019, 716, 215-220.	1.2	6
202	Removal mechanism and quantitative control of trichloroethylene in a post-plasma-catalytic system over Mn–Ce/HZSM-5 catalysts. Catalysis Science and Technology, 2021, 11, 3746-3761.	2.1	6
203	Ba ₂ [FeF ₄ (IO ₃) ₂]IO ₃ : a promising nonlinear optical material achieved by chemical-tailoring-induced structure evolution. Chemical Communications, 2021, 57, 11525-11528.	2.2	6
204	Inflammatory and oxidative stress responses of healthy elders to solar-assisted large-scale cleaning system (SALSCS) and changes in ambient air pollution: A quasi-interventional study in Xi'an, China. Science of the Total Environment, 2022, 806, 151217.	3.9	6
205	Solid-State Nanochannel-Based Sensing Systems: Development, Challenges, and Opportunities. Langmuir, 2022, 38, 2415-2422.	1.6	6
206	Efficient charge separation of a Z-scheme Bi ₅ O _{7â^'<i>δ</i>} I/CeO _{2â^'<i>δ</i>} heterojunction with enhanced visible light photocatalytic activity for NO removal. Inorganic Chemistry Frontiers, 2022, 9, 2832-2844.	3.0	6
207	N-Coordinated Ir single atoms anchored on carbon octahedrons for catalytic oxidation of formaldehyde under ambient conditions. Catalysis Science and Technology, 2022, 12, 4001-4011.	2.1	6
208	Aerosol-assisted flow synthesis of WxTi1â^'xO2 solid solution spheres with enhanced photocatalytic activity. Applied Surface Science, 2011, 257, 4725-4730.	3.1	5
209	High impact of vehicle and solvent emission on the ambient volatile organic compounds in a major city of northwest China. Chinese Chemical Letters, 2022, 33, 2753-2756.	4.8	5
210	Kiwi twig biochar recycling promoting the reduction of NO by a MnO2 catalyst. Applied Surface Science, 2022, 596, 153644.	3.1	5
211	Synthesis and Applications of Nanomaterials With High Photocatalytic Activity on Air Purification. , 2019, , 299-325.		4
212	Precise measurement of single molecule and single cell based on nanopores/nanochannels' charge transfer. Science Bulletin, 2021, 66, 1599-1599.	4.3	4
213	Quantification of carbonate carbon in aerosol filter samples using a modified thermal/optical carbon analyzer (M-TOCA). Analytical Methods, 2012, 4, 2578.	1.3	3
214	Oligomerization Reactions of Criegee Intermediates with Hydroxyalkyl Hydroperoxides: Mechanism, Kinetics, and Structure-Reactivity Relationship. Atmospheric Chemistry and Physics Discussions, 0, , 1-35.	1.0	3
215	Examining the physical and chemical contributions to size spectrum evolution during the development of hazes. Scientific Reports, 2020, 10, 5347.	1.6	3
216	Atmospheric oxidation of 1-butene initiated by OH radical: Implications for ozone and nitrous acid formations. Atmospheric Environment, 2021, 244, 118010.	1.9	3

#	Article	IF	CITATIONS
217	OH-initiated atmospheric degradation of hydroxyalkyl hydroperoxides: mechanism, kinetics, and structure–activity relationship. Atmospheric Chemistry and Physics, 2022, 22, 3693-3711.	1.9	3
218	Synthesis and characterizations of poly(4â€alkylthiazole vinylene). Journal of Applied Polymer Science, 2012, 124, 847-854.	1.3	2
219	Lubricantâ€Infused Surfaces: External Stimuli Responsive Liquidâ€Infused Surfaces Switching between Slippery and Nonslippery States: Fabrications and Applications (Adv. Funct. Mater. 10/2020). Advanced Functional Materials, 2020, 30, 2070061.	7.8	2
220	Kinetic and Mechanistic Investigations of OH-Initiated Atmospheric Degradation of Methyl Butyl Ketone. Journal of Physical Chemistry A, 2022, 126, 2976-2988.	1.1	2
221	Fabricating Z-scheme C-doped TiO ₂ /rGO nanocomposites for enhanced photocatalytic NO removal. Nanotechnology, 2022, 33, 415702.	1.3	2
222	High efficiency linear compressor driven pulse tube cryocooler operating in liquid nitrogen temperature. Science Bulletin, 2009, 54, 4428-4431.	4.3	1
223	CFD investigation of the statistical characteristics of NOx photo-catalytic degradation in a glass curtain wall in hazy winter weather. Sustainable Cities and Society, 2019, 50, 101668.	5.1	1
224	Particle-Wave Dualism in Nanoconfined Space: Ultrafast Substance Flow. Chemical Research in Chinese Universities, 2022, 38, 957-960.	1.3	1
225	Nanoparticle Assembly: Printable Functional Chips Based on Nanoparticle Assembly (Small 4/2017). Small, 2017, 13, .	5.2	1
226	Underwater <scp>Superoleophobicâ€Oleophilic</scp> Chips for Femtomolar Aflatoxins Identification. Chinese Journal of Chemistry, 2022, 40, 1464-1470.	2.6	1
227	Unraveling the Reaction Mechanism of HCHO Catalytic Oxidation on Pristine Co3O4 (110) Surface: A Theoretical Study. Catalysts, 2022, 12, 560.	1.6	1
228	Controllability: Interface Manipulation for Printing Threeâ€Dimensional Microstructures Under Magnetic Guiding (Small 16/2015). Small, 2015, 11, 1984-1984.	5.2	0