Claudia Di Bella

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2385293/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Challenge of Cartilage Integration: Understanding a Major Barrier to Chondral Repair. Tissue Engineering - Part B: Reviews, 2022, 28, 114-128.	2.5	25
2	Molecular Pathogenesis of Sporadic Desmoid Tumours and Its Implications for Novel Therapies: A Systematised Narrative Review. Targeted Oncology, 2022, 17, 223-252.	1.7	3
3	Standardised quantitative ultrasound imaging approach for the contact-less three-dimensional analysis of neocartilage formation in hydrogel-based bioscaffolds. Acta Biomaterialia, 2022, 147, 129-146.	4.1	5
4	Assessment of Native Human Articular Cartilage: A Biomechanical Protocol. Cartilage, 2021, 13, 427S-437S.	1.4	24
5	Creating <i>In Vitro</i> Three-Dimensional Tumor Models: A Guide for the Biofabrication of a Primary Osteosarcoma Model. Tissue Engineering - Part B: Reviews, 2021, 27, 514-529.	2.5	14
6	Human Stem Cell Based Tissue Engineering for <i>In Vivo</i> Cartilage Repair: A Systematic Review. Tissue Engineering - Part B: Reviews, 2021, 27, 74-93.	2.5	10
7	Planned combined onco-plastic (COP) surgical approach improves oncologic outcomes in soft tissue sarcomas. European Journal of Surgical Oncology, 2021, 47, 443-449.	0.5	4
8	FLASH: Fluorescently LAbelled Sensitive Hydrogel to monitor bioscaffolds degradation during neocartilage generation. Biomaterials, 2021, 264, 120383.	5.7	32
9	Formation of alginate microspheres prepared by optimized microfluidics parameters for high encapsulation of bioactive molecules. Journal of Colloid and Interface Science, 2021, 587, 240-251.	5.0	25
10	Characterization of Polycaprolactone Nanohydroxyapatite Composites with Tunable Degradability Suitable for Indirect Printing. Polymers, 2021, 13, 295.	2.0	22
11	Printing between the Lines: Intricate Biomaterial Structures Fabricated via Negative Embodied Sacrificial Template 3D (NEST3D) Printing. Advanced Materials Technologies, 2021, 6, 2100189.	3.0	14
12	Electrostatic Distortion of Meltâ€Electrowritten Patterns by 3D Objects: Quantification, Modeling, and Toolpath Correction. Advanced Materials Technologies, 2021, 6, 2100345.	3.0	13
13	Microencapsulation of growth factors by microfluidic system. MethodsX, 2021, 8, 101324.	0.7	5
14	The Importance of Margins in Sarcoma Surgery. , 2021, , 213-222.		0
15	Microbial Transglutaminase Improves ex vivo Adhesion of Gelatin Methacryloyl Hydrogels to Human Cartilage. Frontiers in Medical Technology, 2021, 3, 773673.	1.3	10
16	3D Printed Multiphasic Scaffolds for Osteochondral Repair: Challenges and Opportunities. International Journal of Molecular Sciences, 2021, 22, 12420.	1.8	18
17	Human articular cartilage repair: Sources and detection of cytotoxicity and genotoxicity in photo-crosslinkable hydrogel bioscaffolds. Stem Cells Translational Medicine, 2020, 9, 302-315.	1.6	45
18	Highlights of the 2019 Annual Academic Surgery Conference. ANZ Journal of Surgery, 2020, 90, 200-201.	0.3	0

CLAUDIA DI BELLA

#	Article	IF	CITATIONS
19	Free-form co-axial bioprinting of a gelatin methacryloyl bio-ink by direct in situ photo-crosslinking during extrusion. Bioprinting, 2020, 19, e00087.	2.9	24
20	Fractured osteochondroma presenting with popliteal pseudoaneurysm: Case report and review of literature. Journal of Vascular Surgery Cases and Innovative Techniques, 2020, 6, 96-100.	0.3	6
21	The role of Thallium-201 scintigraphy and Tc-99m pentavalent dimercaptosuccinic acid in diagnosis and grading of chondrosarcoma. European Journal of Radiology, 2020, 125, 108846.	1.2	6
22	Bioprinting Stem Cells in Hydrogel for In Situ Surgical Application: A Case for Articular Cartilage. Methods in Molecular Biology, 2020, 2140, 145-157.	0.4	12
23	Evaluation of sterilisation methods for bio-ink components: gelatin, gelatin methacryloyl, hyaluronic acid methacryloyl. Biofabrication, 2019, 11, 035003.	3.7	44
24	Protocols for Culturing and Imaging a Human Ex Vivo Osteochondral Model for Cartilage Biomanufacturing Applications. Materials, 2019, 12, 640.	1.3	14
25	Tailoring the mechanical properties of gelatin methacryloyl hydrogels through manipulation of the photocrosslinking conditions. Soft Matter, 2018, 14, 2142-2151.	1.2	123
26	<i>In situ</i> handheld threeâ€dimensional bioprinting for cartilage regeneration. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 611-621.	1.3	232
27	Cartilage Tissue Engineering Using Stem Cells and Bioprinting Technology—Barriers to Clinical Translation. Frontiers in Surgery, 2018, 5, 70.	0.6	67
28	Adipose-Derived Mesenchymal Stem Cells in the Use of Cartilage Tissue Engineering: The Need for a Rapid Isolation Procedure. Stem Cells International, 2018, 2018, 1-9.	1.2	47
29	Biofabrication of human articular cartilage: a path towards the development of a clinical treatment. Biofabrication, 2018, 10, 045006.	3.7	71
30	In vivo biocompatibility of porous and non-porous polypyrrole based trilayered actuators. Journal of Materials Science: Materials in Medicine, 2017, 28, 172.	1.7	9
31	Handheld Co-Axial Bioprinting: Application to in situ surgical cartilage repair. Scientific Reports, 2017, 7, 5837.	1.6	160
32	Biopsy and the diagnostic evaluation of musculoskeletal tumours: critical but often missed in the 21st century. ANZ Journal of Surgery, 2016, 86, 133-138.	0.3	17
33	Development of the Biopen: a handheld device for surgical printing of adipose stem cells at a chondral wound site. Biofabrication, 2016, 8, 015019.	3.7	186
34	Tail of Superficial Myxofibrosarcoma and Undifferentiated Pleomorphic Sarcoma After Preoperative Radiotherapy. Anticancer Research, 2016, 36, 2339-44.	0.5	20
35	3D Bioprinting of Cartilage for Orthopedic Surgeons: Reading between the Lines. Frontiers in Surgery, 2015, 2, 39.	0.6	84
36	Response to Re: The osteochondral dilemma: review of current management and future trends. ANZ Journal of Surgery, 2014, 84, 696-696.	0.3	1

Claudia Di Bella

#	Article	IF	CITATIONS
37	A rapid method for obtaining mesenchymal stem cells and platelets from bone marrow aspirate. Journal of Tissue Engineering and Regenerative Medicine, 2014, 8, 483-492.	1.3	7
38	Differentiation of Stem Cells from Human Infrapatellar Fat Pad: Characterization of Cells Undergoing Chondrogenesis. Tissue Engineering - Part A, 2014, 20, 2213-2223.	1.6	29
39	The osteochondral dilemma: review of current management and future trends. ANZ Journal of Surgery, 2014, 84, 211-217.	0.3	33
40	Bioengineering of articular cartilage: past, present and future. Regenerative Medicine, 2013, 8, 333-349.	0.8	30
41	The Posterior Iliac Crest Outperforms the Anterior Iliac Crest When Obtaining Mesenchymal Stem Cells from Bone Marrow. Journal of Bone and Joint Surgery - Series A, 2013, 95, 1101-1107.	1.4	84
42	Functional Reconstruction of Sarcoma Defects Utilising Innervated Free Flaps. Sarcoma, 2012, 2012, 1-8.	0.7	41
43	Efficient isolation and enrichment of mesenchymal stem cells from bone marrow. Cytotherapy, 2012, 14, 686-693.	0.3	34
44	18F-FDG PET response to neoadjuvant chemotherapy for Ewing sarcoma and osteosarcoma are different. Skeletal Radiology, 2011, 40, 1007-1015.	1.2	60
45	Alloprosthetic Composite is a Suitable Reconstruction After Periacetabular Tumor Resection. Clinical Orthopaedics and Related Research, 2011, 469, 1450-1458.	0.7	50
46	Mesenchymal stem cells and platelet lysate in fibrin or collagen scaffold promote nonâ€cemented hip prosthesis integration. Journal of Orthopaedic Research, 2011, 29, 961-968.	1.2	27
47	Surgical Treatment of Grade I Central Chondrosarcoma. Clinical Orthopaedics and Related Research, 2010, 468, 581-589.	0.7	70
48	Injection of Demineralized Bone Matrix With Bone Marrow Concentrate Improves Healing in Unicameral Bone Cyst. Clinical Orthopaedics and Related Research, 2010, 468, 3047-3055.	0.7	52
49	Osteogenic Protein-1 Associated with Mesenchymal Stem Cells Promote Bone Allograft Integration. Tissue Engineering - Part A, 2010, 16, 2967-2976.	1.6	20
50	The use of fluoride cement: preliminary experimental study and clinical application. La Chirurgia Degli Organi Di Movimento, 2008, 91, 141-146.	0.2	2
51	Historical review of bone prefabrication. La Chirurgia Degli Organi Di Movimento, 2008, 92, 73-78.	0.2	6
52	Allograft-Prosthetic Composite in the Proximal Tibia After Bone Tumor Resection. Clinical Orthopaedics and Related Research, 2008, 466, 459-465.	0.7	94
53	Clear cell chondrosarcoma of bone: long time follow-up of 18 cases. Archives of Orthopaedic and Trauma Surgery, 2008, 128, 137-142.	1.3	60
54	Bone Regeneration in a Rabbit Critical-Sized Skull Defect Using Autologous Adipose-Derived Cells. Tissue Engineering - Part A, 2008, 14, 483-490.	1.6	101

Claudia Di Bella

#	ARTICLE	IF	CITATIONS
55	Local and distant control in non-metastatic pelvic Ewing's sarcoma patients. Journal of Surgical Oncology, 2007, 96, 19-25.	0.8	55
56	Adult osteomyelitis: debridement versus debridement plus Osteoset T pellets. Acta Orthopaedica Belgica, 2007, 73, 238-43.	0.1	63
57	Stromal Stem Cells and Platelet-Rich Plasma Improve Bone Allograft Integration. Clinical Orthopaedics and Related Research, 2005, &NA, 62-68.	0.7	113
58	The use of massive bone allografts in bone tumour surgery of the limb. Orthopaedics and Trauma, 2005, 19, 393-399.	0.3	20
59	Surgical treatment and outcome of conventional pelvic chondrosarcoma. Journal of Bone and Joint Surgery: British Volume, 2005, 87-B, 1527-1530.	3.4	118