Haiping Gao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2385265/publications.pdf

Version: 2024-02-01

		759055	1199470	
12	528	12	12	
papers	citations	h-index	g-index	
12	12	12	705	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Behavior and Potential Impacts of Metal-Based Engineered Nanoparticles in Aquatic Environments. Nanomaterials, 2017, 7, 21.	1.9	112
2	Robust cellulose-based composite adsorption membrane for heavy metal removal. Journal of Hazardous Materials, 2021, 406, 124746.	6.5	70
3	Revolutionizing Membrane Design Using Machine Learning-Bayesian Optimization. Environmental Science &	4.6	63
4	Tannic acid-metal complex modified MXene membrane for contaminants removal from water. Journal of Membrane Science, 2021, 622, 119042.	4.1	56
5	Cellulose nanocrystal/silver (CNC/Ag) thin-film nanocomposite nanofiltration membranes with multifunctional properties. Environmental Science: Nano, 2020, 7, 803-816.	2.2	49
6	Two-Dimensional Ti ₃ C ₂ T <i>>_x</i> MXene/GO Hybrid Membranes for Highly Efficient Osmotic Power Generation. Environmental Science & Environmenta	4.6	41
7	Enhanced Ionic Conductivity and Power Generation Using Ion-Exchange Resin Beads in a Reverse-Electrodialysis Stack. Environmental Science & Eamp; Technology, 2015, 49, 14717-14724.	4.6	32
8	A freestanding graphene oxide membrane for efficiently harvesting salinity gradient power. Carbon, 2018, 138, 410-418.	5.4	31
9	Incorporation of Cellulose Nanocrystals into Graphene Oxide Membranes for Efficient Antibiotic Removal at High Nutrient Recovery. ACS Applied Materials & Samp; Interfaces, 2021, 13, 14102-14111.	4.0	28
10	Study on the Transport Mechanism of a Freestanding Graphene Oxide Membrane for Forward Osmosis. Environmental Science & Enviro	4.6	19
11	Na-Doped Graphitic Carbon Nitride for Removal of Aqueous Contaminants via Adsorption and Photodegradation. ACS Applied Nano Materials, 2021, 4, 7746-7757.	2.4	15
12	Low-Grade Waste Heat Recovery via an Osmotic Heat Engine by Using a Freestanding Graphene Oxide Membrane. ACS Omega, 2018, 3, 15501-15509.	1.6	12