
Ryo Sekine

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2384910/publications.pdf Version: 2024-02-01

RVO SEKINE

#	Article	IF	CITATIONS
1	Methods for assessing laterally-resolved distribution, speciation and bioavailability of phosphorus in soils. Reviews in Environmental Science and Biotechnology, 2022, 21, 53-74.	8.1	13
2	Mapping the Complex Journey of Swimming Pool Contaminants: A Multi-Method Systems Approach. Water (Switzerland), 2022, 14, 2062.	2.7	4
3	Microspectroscopy reveals dust-derived apatite grains in acidic, highly-weathered Hawaiian soils. Geoderma, 2021, 381, 114681.	5.1	22
4	Finding Nano: Challenges Involved in Monitoring the Presence and Fate of Engineered Titanium Dioxide Nanoparticles in Aquatic Environments. Water (Switzerland), 2021, 13, 734.	2.7	19
5	Effects of a nitrification inhibitor on nitrogen species in the soil and the yield and phosphorus uptake of maize. Science of the Total Environment, 2020, 715, 136895.	8.0	13
6	Chemical characterisation, antibacterial activity, and (nano)silver transformation of commercial personal care products exposed to household greywater. Environmental Science: Nano, 2019, 6, 3027-3038.	4.3	10
7	Combining diffusive gradients in thin films (DGT) and spectroscopic techniques for the determination of phosphorus species in soils. Analytica Chimica Acta, 2019, 1057, 80-87.	5.4	11
8	Characterization of phosphorus compounds in soils by deep ultraviolet (DUV) Raman microspectroscopy. Journal of Raman Spectroscopy, 2017, 48, 867-871.	2.5	14
9	Complementary Imaging of Silver Nanoparticle Interactions with Green Algae: Dark-Field Microscopy, Electron Microscopy, and Nanoscale Secondary Ion Mass Spectrometry. ACS Nano, 2017, 11, 10894-10902.	14.6	54
10	Phosphorus availability of sewage sludgeâ€based fertilizers determined by the diffusive gradients in thin films (DGT) technique. Journal of Plant Nutrition and Soil Science, 2017, 180, 594-601.	1.9	31
11	Aging of Dissolved Copper and Copperâ€based Nanoparticles in Five Different Soils: Shortâ€ŧerm Kinetics vs. Longâ€ŧerm Fate. Journal of Environmental Quality, 2017, 46, 1198-1205.	2.0	55
12	Silver Nanoparticles Entering Soils via the Wastewater–Sludge–Soil Pathway Pose Low Risk to Plants but Elevated Cl Concentrations Increase Ag Bioavailability. Environmental Science & Technology, 2016, 50, 8274-8281.	10.0	92
13	Analytical characterisation of nanoscale zero-valent iron: A methodological review. Analytica Chimica Acta, 2016, 903, 13-35.	5.4	87
14	Thermal Treatment of Chromium(III) Oxide with Carbonates Analyzed by Far-Infrared Spectroscopy. Applied Spectroscopy, 2015, 69, 1210-1214.	2.2	4
15	Bio-sensing with butterfly wings: naturally occurring nano-structures for SERS-based malaria parasite detection. Physical Chemistry Chemical Physics, 2015, 17, 21164-21168.	2.8	57
16	Speciation and Lability of Ag-, AgCl-, and Ag ₂ S-Nanoparticles in Soil Determined by X-ray Absorption Spectroscopy and Diffusive Gradients in Thin Films. Environmental Science & Technology, 2015, 49, 897-905.	10.0	99
17	Quantifying the adsorption of ionic silver and functionalized nanoparticles during ecotoxicity testing: Test container effects and recommendations. Nanotoxicology, 2015, 9, 1005-1012.	3.0	48
18	Silver sulfide nanoparticles (Ag ₂ S-NPs) are taken up by plants and are phytotoxic. Nanotoxicology, 2015, 9, 1041-1049.	3.0	96

RYO SEKINE

#	Article	IF	CITATIONS
19	Fate of zinc and silver engineered nanoparticles in sewerage networks. Water Research, 2015, 77, 72-84.	11.3	96
20	In Situ Chemical Transformations of Silver Nanoparticles along the Water–Sediment Continuum. Environmental Science & Technology, 2015, 49, 318-325.	10.0	37
21	Hard X-ray synchrotron biogeochemistry: piecing together the increasingly detailed puzzle. Environmental Chemistry, 2014, 11, 1.	1.5	4
22	Molecular Characterization of DNA Double Strand Breaks with Tipâ€Enhanced Raman Scattering. Angewandte Chemie - International Edition, 2014, 53, 169-172.	13.8	77
23	Silver speciation and release in commercial antimicrobial textiles as influenced by washing. Chemosphere, 2014, 111, 352-358.	8.2	100
24	Surface Immobilization of Engineered Nanomaterials for in Situ Study of their Environmental Transformations and Fate. Environmental Science & amp; Technology, 2013, 47, 9308-9316.	10.0	28
25	Determination of Phosphorus Fertilizer Soil Reactions by Raman and Synchrotron Infrared Microspectroscopy. Applied Spectroscopy, 2013, 67, 1165-1170.	2.2	21
26	Analysis of 5-Hydroxyisoflavones by Surface-Enhanced Raman Spectroscopy: Genistein and Methoxy Derivatives. Journal of Physical Chemistry B, 2011, 115, 13943-13954.	2.6	11
27	Raman, infrared and computational analysis of genistein and its methoxy derivatives. Vibrational Spectroscopy, 2011, 57, 306-314.	2.2	20
28	Surface-Enhanced Raman Spectroscopy Of Isoflavones With Silver-Doped Nano-Porous Inorganic Substrates. , 2010, , .		0
29	Comparative Analysis of Surface-Enhanced Raman Spectroscopy of Daidzein and Formononetin. Journal of Physical Chemistry B, 2010, 114, 7104-7111.	2.6	10
30	Chemical analysis of acoustically levitated drops by Raman spectroscopy. Analytical and Bioanalytical Chemistry, 2009, 394, 1433-1441.	3.7	46