Izhak Etsion

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2384312/publications.pdf

Version: 2024-02-01

37111 50170 9,612 140 46 96 citations h-index g-index papers 141 141 141 4148 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	An advanced efficient model for adhesive wear in elastic—plastic spherical contact. Friction, 2022, 10, 1276-1284.	3.4	12
2	Analysis of Incomplete Film in Parallel Plates Including Inlet Tube and Groove. Journal of Tribology, 2021, 143, .	1.0	2
3	Evolution of adhesive wear and friction in elastic-plastic spherical contact. Wear, 2021, 478-479, 203915.	1.5	13
4	A Coupled Eulerian–Lagrangian Model for Sliding Inception of Elastic–Plastic Spherical Contact. Journal of Tribology, 2021, 143, .	1.0	4
5	Static Friction Behavior of Spherical Contact With Ultrathin Soft Coating. Journal of Tribology, 2021, 143, .	1.0	2
6	Strengthening and Weakening Effects in Bilayer Coated Spherical Contact. Frontiers in Mechanical Engineering, 2020, 6, .	0.8	1
7	Model for the static friction coefficient of spherical contact with a soft metal coating. SN Applied Sciences, 2020, 2, 1.	1.5	6
8	Recent Development in Modeling of Coated Spherical Contact. Materials, 2020, 13, 460.	1.3	7
9	Model for the static friction coefficient in a full stick elastic-plastic coated spherical contact. Friction, 2019, 7, 613-624.	3.4	14
10	Simultaneous Shot-Peening of hard and soft particles for friction reduction in reciprocal sliding. Tribology International, 2019, 130, 19-26.	3.0	6
11	Yield modes in a coated spherical contact. Tribology International, 2018, 120, 309-316.	3.0	7
12	Electrical Resistance Model of a Bilayer-Coated Spherical Contact. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2018, 8, 1614-1620.	1.4	7
13	Experimental study of the effect of coating thickness and substrate roughness on tool wear during turning. Tribology International, 2017, 110, 341-347.	3.0	58
14	A comparison of stick and slip contact conditions for a coated sphere compressed by a rigid flat. Friction, 2017, 5, 326-338.	3.4	17
15	Comparing surface topography parameters of rough surfaces obtained with spectral moments and deterministic methods. Tribology International, 2016, 93, 137-141.	3.0	51
16	Plasticity evolution in a coated sphere compressed by a rigid flat. Tribology International, 2016, 98, 116-124.	3.0	19
17	Effects of elastic modulus mismatch between coating and substrate on the friction and wear properties of TiN and TiAlN coating systems. Wear, 2015, 338-339, 54-61.	1.5	77
18	Indentation pop-in as a potential characterization of weakening effect in coating/substrate systems. Wear, 2015, 338-339, 325-331.	1,5	6

#	Article	IF	Citations
19	Comment on Leonardo da Vinciâ \in ^{Ms} Friction Experiments: An Old Story Acknowledged and Repeated. Tribology Letters, 2015, 58, 1.	1.2	51
20	Experimental study of the effect of dwell time and normal load on static friction in creeping elastic–plastic polymer spherical contact. Wear, 2014, 309, 139-145.	1.5	10
21	Yield inception of a soft coating on a flat substrate indented by a rigid sphere. Surface and Coatings Technology, 2014, 240, 444-449.	2.2	13
22	Discussion of the paper by Checo et al. on Moving textures: Simulation of a ring sliding on a textured liner, Tribology International, http://dx.doi.org/10.1016/j.triboint.2013.12.013. Tribology International, 2014, 73, 69.	3.0	0
23	Modeling of surface texturing in hydrodynamic lubrication. Friction, 2013, 1, 195-209.	3.4	166
24	The Effect of Determining Topography Parameters on Analyzing Elastic Contact Between Isotropic Rough Surfaces. Journal of Tribology, 2013, 135, .	1.0	47
25	Effect of Different Types of Material Hardening on Hysteretic Behavior of Spherical Contact under Combined Normal and Tangential Loading. Lecture Notes in Applied and Computational Mechanics, 2013, , 377-382.	2.0	0
26	Experimental study of a potential weakening effect in spheres with thin hard coatings. Wear, 2012, 296, 590-597.	1.5	26
27	Discussion of the Paper: Optical In Situ Micro Tribometer for Analysis of Real Contact Area for Contact Mechanics, Adhesion, and Sliding Experiments. Tribology Letters, 2012, 46, 205-205.	1.2	7
28	Discussion of the paper by Shuangbiao Liu, on Boundary conditions in lubrication with one dimensional analytical solutions, Tribology International, doi:10.1016/j.triboint.2011.11.021. Tribology International, 2012, 50, 91.	3.0	0
29	Plastic yield inception of an indented coated flat and comparison with a flattened coated sphere. Tribology International, 2012, 53, 61-67.	3.0	26
30	The onset of plastic yielding in a coated sphere compressed by a rigid flat. Wear, 2011, 271, 2968-2977.	1.5	51
31	The effect of contact conditions and material properties on plastic yield inception in a spherical shell compressed by a rigid flat. International Journal of Solids and Structures, 2011, 48, 463-471.	1.3	5
32	The evolution of fretting wear in a micro-spherical contact. Wear, 2011, 270, 567-575.	1.5	26
33	The effect of frequency on fretting in a micro-spherical contact. Wear, 2011, 270, 857-865.	1.5	19
34	Elastic–plastic spherical contact under cyclic tangential loading in pre-sliding. Wear, 2011, 270, 888-894.	1.5	17
35	Discussion of the paper: Micro CNC surface texturing on polyoxymethylene (POM) and its tribological performance in lubricated sliding (M.H. Cho and Sangil Park, Tribology International 44 (2011)) Tj ETQq1 1 0.78	43 84 0rgBT	Overlock 1
36	The Onset of Plastic Yielding in a Spherical Shell Compressed by a Rigid Flat. Journal of Applied Mechanics, Transactions ASME, 2011, 78, .	1.1	13

3

#	Article	IF	CITATIONS
37	Long Time Spreading of a Microdroplet on a Smooth Solid Surface. Langmuir, 2010, 26, 1824-1829.	1.6	6
38	The Effect of Asperity Flattening During Cyclic Normal Loading of a Rough Spherical Contact. Tribology Letters, 2010, 40, 347-355.	1.2	15
39	Elastic–Plastic Spherical Contact Modeling Including Roughness Effects. Tribology Letters, 2010, 40, 357-363.	1.2	32
40	Liposomes as potential biolubricant additives for wear reduction in human synovial joints. Wear, 2010, 268, 1037-1042.	1.5	29
41	Unloading of an elastic–plastic spherical contact under stick contact condition. International Journal of Solids and Structures, 2010, 47, 990-997.	1.3	38
42	Theoretical Analysis of Surface-Textured Elastomer Sleeve in Lubricated Rotary Sliding. Tribology Transactions, 2010, 53, 376-385.	1.1	25
43	Revisiting the Cattaneo–Mindlin Concept of Interfacial Slip in Tangentially Loaded Compliant Bodies. Journal of Tribology, 2010, 132, .	1.0	64
44	The Effect of Contact Conditions on the Onset of Plastic Yielding in a Spherical Shell Compressed by a Rigid Flat. , $2010, $, .		0
45	Liposomes Act as Effective Biolubricants for Friction Reduction in Human Synovial Joints. Langmuir, 2010, 26, 1107-1116.	1.6	108
46	Dynamic Elastic Contact Model for Sliding Realistic Rough Surfaces. , 2010, , .		0
47	Very Early Stage of Elastic-Plastic Spherical Contact Fretting. , 2009, , .		1
48	Numerical Analysis of a Spherical Shell Compressed by a Rigid Flat. , 2009, , .		0
49	The Effect of Dwell Time on the Static Friction in Creeping Elastic–Plastic Polymer Spherical Contact. Tribology Letters, 2009, 35, 159-170.	1.2	15
50	The Effect of Elastomer Surface Texturing in Soft Elasto-Hydrodynamic Lubrication. Tribology Letters, 2009, 36, 95-103.	1.2	47
51	Improving fuel efficiency with laser surface textured piston rings. Tribology International, 2009, 42, 542-547.	3.0	373
52	The effect of surface texturing in soft elasto-hydrodynamic lubrication. Tribology International, 2009, 42, 284-292.	3.0	115
53	Wear life and adhesion of solid lubricant films on laser-textured steel surfaces. Wear, 2009, 267, 1203-1207.	1.5	83
54	Techniques for assessment of wear between human cartilage surfaces. Wear, 2009, 266, 1216-1223.	1.5	24

#	Article	IF	CITATIONS
55	A simple atomic force microscopy calibration method for direct measurement of surface energy on nanostructured surfaces covered with molecularly thin liquid films. Review of Scientific Instruments, 2009, 80, 055109.	0.6	5
56	Revisiting the Cattaneo-Mindlin Concept of Interfacial Slip in Tangentially Loaded Compliant Bodies. , 2009, , .		1
57	Failure of Brittle and Ductile Hard Disks Due to High Shock Levels. Journal of Mechanical Design, Transactions of the ASME, 2009, 131, .	1.7	1
58	State of the Art in Laser Surface Texturing. , 2009, , 761-762.		19
59	HDI-03 AN ANALYSIS OF THE DIMPLE/GIMBAL CONTACT IN A HARD DISK DRIVE SUSPENSION (Head/Disk) Tj ETQq1 Joint Conference on Micromechatronics for Information and Precision Equipment IIP/ISPS Joint MIPE, 2009, 2009, 105-106.	1 1 0.7843 o.o	314 rgBT / 0\ 2
60	A Model for Potential Adhesive Wear Particle at Sliding Inception of a Spherical Contact. Tribology Letters, 2008, 30, 225-233.	1.2	25
61	Loading–unloading of an elastic–plastic adhesive spherical microcontact. Journal of Colloid and Interface Science, 2008, 321, 242-250.	5.0	55
62	Friction and wear of MoS2 films on laser textured steel surfaces. Surface and Coatings Technology, 2008, 202, 3332-3340.	2.2	177
63	In situ and real-time optical investigation of junction growth in spherical elastic–plastic contact. Wear, 2008, 264, 1043-1050.	1.5	70
64	A contact model for a creeping sphere and a rigid flat. Wear, 2008, 265, 598-605.	1.5	28
65	The Effect of Laser Surface Texturing on Soft Elasto-Hydrodynamic Lubrication Considering Non-Linear Elasticity. , 2008, , .		0
66	Techniques for Assessment of Wear Between Human Cartilage Surfaces. , 2008, , .		0
67	Wear Between Human Cartilage Surfaces. , 2008, , .		1
68	A parameter study of separation modes of adhering microcontacts. Journal of Applied Physics, 2008, 103, 064902.	1.1	18
69	Surface Active Phospholipids as Cartilage Lubricants. , 2008, , .		0
70	Theoretical and Experimental Investigation of Plastic Hysteresis in Spherical Contact Under Combined Normal and Tangential Loading. , 2008, , .		0
71	Models of Potential and Wear Particles in a Spherical Contact. , 2008, , .		O

Discussion: "A Greenwood–Williamson Model of Small-Scale Friction―(Jones, R. E., 2007, ASME J. Appl.) Tj ETQq0 0 0 0 rgBT /Overl

#	Article	IF	CITATIONS
73	Partial Elastomer Texturing in Soft Elasto Hydrodynamic Lubrication., 2008,,.		2
74	Experimental Study of Static Friction in a Spherical Elastic-Plastic Contact., 2008,,.		0
75	Experimental Study of a Creeping Polymer Sphere in Contact With a Rigid Flat. , 2008, , .		O
76	Theoretical Model of Plastic Hysteresis in Spherical Contact Under Combined Normal and Tangential Loading., 2008,,.		0
77	Pre-Sliding of a Spherical Elastic-Plastic Contact. , 2008, , .		0
78	Loading-Unloading of an Elastic-Plastic Adhesive Spherical Contact. , 2008, , .		0
79	Analysis of Surface Textured Air Bearing Sliders With Rarefaction Effects. , 2007, , 661.		O
80	Discussion: "A Mathematical Model for Frictional Elastic-Plastic Sphere-on-Flat Contacts at Sliding Incipient―(Chang, L., and Zhang, H., 2007, ASME J. Appl. Mech., 74, pp. 100–106). Journal of Applied Mechanics, Transactions ASME, 2007, 74, 1057-1057.	1.1	O
81	A Study of the Importance of Three Key Parameters on the Separation Modes of Adhering Microcontacts. , 2007, , .		O
82	Resolving the contradiction of asperities plastic to elastic mode transition in current contact models of fractal rough surfaces. Wear, 2007, 262, 624-629.	1.5	143
83	A finite element model of loading and unloading of an asperity contact with adhesion and plasticity. Journal of Colloid and Interface Science, 2007, 312, 522-528.	5.0	73
84	In situ investigation of the contact area in elastic–plastic spherical contact during loading–unloading. Tribology Letters, 2007, 25, 153-160.	1.2	69
85	The influence of operating and design parameters on the magnetic tape/guide friction coefficient. Tribology Letters, 2007, 25, 161-171.	1.2	8
86	Enhancing tribological performance of the magnetic tape/guide interface by laser surface texturing. Tribology Letters, 2007, 27, 89-95.	1.2	45
87	A Model for Magnetic Tape/Guide Friction Reduction by Laser Surface Texturing. Tribology Letters, 2007, 28, 9-17.	1.2	33
88	Analysis of Surface Textured Air Bearing Sliders with Rarefaction Effects. Tribology Letters, 2007, 28, 251-261.	1.2	42
89	A Model for Junction Growth of a Spherical Contact. , 2007, , .		1
90	In Situ and Real Time Optical Investigation of Junction Growth in Spherical Elastic-Plastic Contact. , 2007, , .		2

#	Article	IF	Citations
91	Reducing the Magnetic Tape/Guide Friction Coefficient by Laser Surface Texturing: Experimental Analysis., 2007,,.		0
92	A Model for the Magnetic Tape/Guide Interface With Laser Surface Texturing. , 2007, , .		1
93	The effect of contact conditions and material properties on elastic-plastic spherical contact. Journal of Mechanics of Materials and Structures, 2006, 1 , 865-879.	0.4	81
94	The effect of contact conditions and material properties on the elasticity terminus of a spherical contact. International Journal of Solids and Structures, 2006, 43, 5736-5749.	1.3	163
95	Multiple loading–unloading of an elastic–plastic spherical contact. International Journal of Solids and Structures, 2006, 43, 7119-7127.	1.3	64
96	Unloading an elastic–plastic contact of rough surfaces. Journal of the Mechanics and Physics of Solids, 2006, 54, 2652-2674.	2.3	108
97	Testing piston rings with partial laser surface texturing for friction reduction. Wear, 2006, 261, 792-796.	1.5	332
98	The effect of various surface treatments on piston pin scuffing resistance. Wear, 2006, 261, 785-791.	1.5	89
99	A Hydrostatic Laser Surface Textured Gas Seal. Tribology Letters, 2006, 22, 21-28.	1.2	57
100	A rational human joint friction test using a human cartilage-on-cartilage arrangement. Tribology Letters, 2006, 22, 29-36.	1.2	59
101	A novel test rig for inÂsitu and real time optical measurement of the contact area evolution during pre-sliding of a spherical contact. Tribology Letters, 2006, 23, 55-63.	1.2	79
102	Unloading of an elastic–plastic loaded spherical contact. International Journal of Solids and Structures, 2005, 42, 3716-3729.	1.3	229
103	Nanoscale fretting wear study by scanning probe microscopy. Tribology Letters, 2005, 18, 493-498.	1.2	39
104	State of the Art in Laser Surface Texturing. Journal of Tribology, 2005, 127, 248-253.	1.0	1,134
105	The effect of laser surface texturing on transitions in lubrication regimes during unidirectional sliding contact. Tribology International, 2005, 38, 219-225.	3.0	497
106	A Static Friction Model for Elastic-Plastic Contacting Rough Surfaces. Journal of Tribology, 2004, 126, 34-40.	1.0	264
107	The Effect of WS2Nanoparticles on Friction Reduction in Various Lubrication Regimes. Tribology Letters, 2004, 17, 179-186.	1.2	150
108	Experimental Investigation of Laser Surface Textured Parallel Thrust Bearings. Tribology Letters, 2004, 17, 295-300.	1.2	309

#	Article	IF	CITATIONS
109	Slip Index: A New Unified Approach to Fretting. Tribology Letters, 2004, 17, 569-573.	1.2	113
110	Improving Tribological Performance of Mechanical Components by Laser Surface Texturing. Tribology Letters, 2004, 17, 733-737.	1.2	519
111	The Effect of Laser Texturing of Steel Surfaces and Speed-Load Parameters on the Transition of Lubrication Regime from Boundary to Hydrodynamic. Tribology Transactions, 2004, 47, 299-307.	1.1	193
112	Adhesion in elastic–plastic spherical microcontact. Journal of Colloid and Interface Science, 2003, 261, 372-378.	5.0	113
113	A Finite Element Based Elastic-Plastic Model for the Contact of Rough Surfaces. Tribology Transactions, 2003, 46, 383-390.	1.1	351
114	A Semi-Analytical Solution for the Sliding Inception of a Spherical Contact. Journal of Tribology, 2003, 125, 499-506.	1.0	140
115	Crosstalk problems in scanning-by-probe atomic force microscopy. Review of Scientific Instruments, 2003, 74, 3569-3571.	0.6	28
116	An improved wedge calibration method for lateral force in atomic force microscopy. Review of Scientific Instruments, 2003, 74, 3362-3367.	0.6	374
117	Adhesive force: the underlying cause of the disc anchorage to the fossa and/or eminence in the temporomandibular joint—A new concept. International Journal of Oral and Maxillofacial Surgery, 2002, 31, 94-99.	0.7	52
118	Different aspects of the role of wear debris in fretting wear. Wear, 2002, 252, 902-910.	1.5	295
119	The effect of surface regular microtopography on fretting fatigue life. Wear, 2002, 253, 509-515.	1.5	88
120	Analysis of the Hydrodynamic Effects in a Surface Textured Circumferential Gas Seal. Tribology Transactions, 2001, 44, 472-478.	1.1	136
121	Friction-Reducing Surface-Texturing in Reciprocating Automotive Components. Tribology Transactions, 2001, 44, 359-366.	1.1	417
122	A Model for the Static Sealing Performance of Compliant Metallic Gas Seals Including Surface Roughness and Rarefaction Effects. Tribology Transactions, 2000, 43, 237-244.	1.1	26
123	The Contact of a Compliant Curved and a Nominally Flat Rough Surfaces. Tribology Transactions, 2000, 43, 507-513.	1.1	11
124	Electrical Conductivity and Friction Force Estimation in Compliant Electrical Connectors. Tribology Transactions, 2000, 43, 816-822.	1.1	33
125	Discussion: "An Asperity Microcontact Model Incorporating the Transition from Elastic Deformation to Fully Plastic Flow―[ASME J. Tribol., 122, No. 1, pp. 86–93 (2000)]1. Journal of Tribology, 2000, 122, 479-479.	1.0	8
126	Analytical Approximations in Modeling Contacting Rough Surfaces. Journal of Tribology, 1999, 121, 234-239.	1.0	88

#	Article	IF	CITATIONS
127	Study of the wear behavior and adhesion of diamond films deposited on steel substrates by use of a Cr–N interlayer. Diamond and Related Materials, 1999, 8, 859-864.	1.8	37
128	Comparison of the Static Friction Subboundary Lubrication Model with Experimental Measurements on Thin-Film Disks. Tribology Transactions, 1998, 41, 217-224.	1.1	29
129	Static Friction of Contacting Real Surfaces in the Presence of Sub-Boundary Lubrication. Journal of Tribology, 1998, 120, 296-303.	1.0	42
130	Static Sealing Performance of Gas Mechanical Seals Including Surface Roughness and Rarefaction Effects. Tribology Transactions, 1998, 41, 531-536.	1.1	18
131	[100]-Textured diamond films for tribological applications. Diamond and Related Materials, 1997, 6, 381-385.	1.8	38
132	Nonlinear Dynamic Analysis of Noncontacting Coned-Face Mechanical Seals. ASLE Transactions, 1986, 29, 383-393.	0.6	35
133	Stability Threshold and Steady-State Response of Noncontacting Coned-Face Seals. ASLE Transactions, 1985, 28, 449-460.	0.6	68
134	Experimental Observation of the Dynamic Behavior of Noncontacting Coned-Face Mechanical Seals. ASLE Transactions, 1984, 27, 263-270.	0.6	25
135	Fluid Film Dynamic Coefficients in Mechanical Face Seals. Journal of Lubrication Technology, 1983, 105, 297-302.	0.1	36
136	The Accuracy of the Narrow Seal Approximation in Analyzing Radial Face Seals. ASLE Transactions, 1980, 23, 208-216.	0.6	22
137	Performance of End-Face Seals with Diametral Tilt and Coning—Hydrostatic Effects. ASLE Transactions, 1980, 23, 279-288.	0.6	25
138	Nonaxisymmetric Incompressible Hydrostatic Pressure Effects in Radial Face Seals. Journal of Lubrication Technology, 1978, 100, 379-383.	0.1	11
139	Closure to "Discussion of  Nonaxisymmetric Incompressible Hydrostatic Pressure Effects in Radial Face Seals'―(1978, ASME J. Lubr. Technol., 100, p. 384). Journal of Lubrication Technology, 1978, 100, 384-385.	0.1	0
140	Optimum Step Design for Centering of Pistons Moving in an Incompressible Fluid. Journal of Fluids Engineering, Transactions of the ASME, 1977, 99, 675-680.	0.8	3