
Kathleen J Millen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2384246/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Consensus Paper: Pathological Role of the Cerebellum in Autism. Cerebellum, 2012, 11, 777-807.	1.4	577
2	Consensus Paper: Cerebellar Development. Cerebellum, 2016, 15, 789-828.	1.4	337
3	Active medulloblastoma enhancers reveal subgroup-specific cellular origins. Nature, 2016, 530, 57-62.	13.7	318
4	Tissue-Specific Thyroid Hormone Deprivation and Excess in Monocarboxylate Transporter (Mct) 8-Deficient Mice. Endocrinology, 2006, 147, 4036-4043.	1.4	286
5	The mouse Dreher gene Lmx1a controls formation of the roof plate in the vertebrate CNS. Nature, 2000, 403, 764-769.	13.7	265
6	A developmental and genetic classification for midbrain-hindbrain malformations. Brain, 2009, 132, 3199-3230.	3.7	262
7	FOXC1 is required for normal cerebellar development and is a major contributor to chromosome 6p25.3 Dandy-Walker malformation. Nature Genetics, 2009, 41, 1037-1042.	9.4	234
8	Heterozygous deletion of the linked genes ZIC1 and ZIC4 is involved in Dandy-Walker malformation. Nature Genetics, 2004, 36, 1053-1055.	9.4	206
9	Functional Analysis of the weaver Mutant GIRK2 K+ Channel and Rescue of weaver Granule Cells. Neuron, 1996, 16, 941-952.	3.8	194
10	Cilia Proteins Control Cerebellar Morphogenesis by Promoting Expansion of the Granule Progenitor Pool. Journal of Neuroscience, 2007, 27, 9780-9789.	1.7	186
11	The roof plate regulates cerebellar cell-type specification and proliferation. Development (Cambridge), 2006, 133, 2793-2804.	1.2	180
12	Cerebellar development and disease. Current Opinion in Neurobiology, 2008, 18, 12-19.	2.0	166
13	Roof plate-dependent patterning of the vertebrate dorsal central nervous system. Developmental Biology, 2005, 277, 287-295.	0.9	161
14	Proprioceptive Sensory Neuropathy in Mice with a Mutation in the Cytoplasmic Dynein Heavy Chain 1 Gene. Journal of Neuroscience, 2007, 27, 14515-14524.	1.7	149
15	Mapping of Deletion and Translocation Breakpoints in 1q44 Implicates the Serine/Threonine Kinase AKT3 in Postnatal Microcephaly and Agenesis of the Corpus Callosum. American Journal of Human Genetics, 2007, 81, 292-303.	2.6	144
16	Lmx1a regulates fates and location of cells originating from the cerebellar rhombic lip and telencephalic cortical hem. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10725-10730.	3.3	132
17	Rhombencephalosynapsis: a hindbrain malformation associated with incomplete separation of midbrain and forebrain, hydrocephalus and a broad spectrum of severity. Brain, 2012, 135, 1370-1386.	3.7	131
18	Lmx1a is required for segregation of sensory epithelia and normal ear histogenesis and	1.5	127

morphogenesis. Cell and Tissue Research, 2008, 334, 339-358.

#	Article	IF	CITATIONS
19	The ZIC gene family in development and disease. Clinical Genetics, 2005, 67, 290-296.	1.0	125
20	Development and malformations of the cerebellum in mice. Molecular Genetics and Metabolism, 2003, 80, 54-65.	0.5	123
21	Genetic Variation and Population Substructure in Outbred CD-1 Mice: Implications for Genome-Wide Association Studies. PLoS ONE, 2009, 4, e4729.	1.1	123
22	Midbrain and hindbrain malformations: advances in clinical diagnosis, imaging, and genetics. Lancet Neurology, The, 2013, 12, 381-393.	4.9	110
23	Mutation of FOXC1 and PITX2 induces cerebral small-vessel disease. Journal of Clinical Investigation, 2014, 124, 4877-4881.	3.9	105
24	Multiple developmental programs are altered by loss of <i>Zic1</i> and <i>Zic4</i> to cause Dandy-Walker malformation cerebellar pathogenesis. Development (Cambridge), 2011, 138, 1207-1216.	1.2	100
25	Spatial and cell type transcriptional landscape of human cerebellar development. Nature Neuroscience, 2021, 24, 1163-1175.	7.1	98
26	Spatiotemporal expansion of primary progenitor zones in the developing human cerebellum. Science, 2019, 366, 454-460.	6.0	97
27	Control of roof plate formation by Lmx1a in the developing spinal cord. Development (Cambridge), 2004, 131, 2693-2705.	1.2	82
28	Lmx1a maintains proper neurogenic, sensory, and non-sensory domains in the mammalian inner ear. Developmental Biology, 2009, 333, 14-25.	0.9	81
29	Loss of cyclin D1 impairs cerebellar development and suppresses medulloblastoma formation. Development (Cambridge), 2006, 133, 3929-3937.	1.2	80
30	Mechanisms of roof plate formation in the vertebrate CNS. Nature Reviews Neuroscience, 2004, 5, 808-812.	4.9	79
31	Mouse models of human PIK3CA-related brain overgrowth have acutely treatable epilepsy. ELife, 2015, 4,	2.8	79
32	A developmental classification of malformations of the brainstem. Annals of Neurology, 2007, 62, 625-639.	2.8	75
33	Both Rare and De Novo Copy Number Variants Are Prevalent in Agenesis of the Corpus Callosum but Not in Cerebellar Hypoplasia or Polymicrogyria. PLoS Genetics, 2013, 9, e1003823.	1.5	69
34	Zic1 and Zic4 regulate zebrafish roof plate specification and hindbrain ventricle morphogenesis. Developmental Biology, 2008, 314, 376-392.	0.9	66
35	Cerebellar and posterior fossa malformations in patients with autismâ€associated chromosome 22q13 terminal deletion. American Journal of Medical Genetics, Part A, 2013, 161, 131-136.	0.7	65
36	Control of Roof Plate Development and Signaling by Lmx1b in the Caudal Vertebrate CNS. Journal of Neuroscience, 2004, 24, 5694-5703.	1.7	63

#	Article	IF	CITATIONS
37	Overlapping Function of <i>Lmx1a</i> and <i>Lmx1b</i> in Anterior Hindbrain Roof Plate Formation and Cerebellar Growth. Journal of Neuroscience, 2009, 29, 11377-11384.	1.7	62
38	Neurogenetics of the Cerebellar System. Journal of Child Neurology, 1999, 14, 574-581.	0.7	61
39	Redefining the Etiologic Landscape of Cerebellar Malformations. American Journal of Human Genetics, 2019, 105, 606-615.	2.6	61
40	Transformation of the cerebellum into more ventral brainstem fates causes cerebellar agenesis in the absence of <i>Ptf1a</i> function. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1777-86.	3.3	59
41	Mutations in CRADD Result in Reduced Caspase-2-Mediated Neuronal Apoptosis and Cause Megalencephaly with a Rare Lissencephaly Variant. American Journal of Human Genetics, 2016, 99, 1117-1129.	2.6	50
42	Differential Gene Expression in the Developing Lateral Geniculate Nucleus and Medial Geniculate Nucleus Reveals Novel Roles for Zic4 and Foxp2 in Visual and Auditory Pathway Development. Journal of Neuroscience, 2009, 29, 13672-13683.	1.7	48
43	Beyond Gómezâ€Lópezâ€Hernández syndrome: Recurring phenotypic themes in rhombencephalosynapsis. American Journal of Medical Genetics, Part A, 2012, 158A, 2393-2406.	0.7	40
44	Mutations in Extracellular Matrix Genes <i>NID1</i> and <i>LAMC1</i> Cause Autosomal Dominant Dandy-Walker Malformation and Occipital Cephaloceles. Human Mutation, 2013, 34, 1075-1079.	1.1	38
45	Foxc1 dependent mesenchymal signalling drives embryonic cerebellar growth. ELife, 2014, 3, .	2.8	38
46	Intermediate progenitors support migration of neural stem cells into dentate gyrus outer neurogenic niches. ELife, 2020, 9, .	2.8	37
47	Reciprocal fusion transcripts of two novel Zn-finger genes in a female with absence of the corpus callosum, ocular colobomas and a balanced translocation between chromosomes 2p24 and 9q32. European Journal of Human Genetics, 2003, 11, 527-534.	1.4	36
48	Linkage to chromosome 2q36.1 in autosomal dominant Dandy-Walker malformation with occipital cephalocele and evidence for genetic heterogeneity. Human Genetics, 2008, 123, 237-245.	1.8	36
49	ZIC1 Function in Normal Cerebellar Development and Human Developmental Pathology. Advances in Experimental Medicine and Biology, 2018, 1046, 249-268.	0.8	36
50	Zac1 plays a key role in the development of specific neuronal subsets in the mouse cerebellum. Neural Development, 2011, 6, 25.	1.1	31
51	Phenotypic outcomes in Mouse and Human Foxc1 dependent Dandy-Walker cerebellar malformation suggest shared mechanisms. ELife, 2017, 6, .	2.8	31
52	Adaptations in Hippo-Yap signaling and myofibroblast fate underlie scar-free ear appendage wound healing in spiny mice. Developmental Cell, 2021, 56, 2722-2740.e6.	3.1	31
53	Molecular definition of an allelic series of mutations disrupting the mouse Lmx1a (dreher) gene. Mammalian Genome, 2006, 17, 1025-1032.	1.0	30
54	Two Hundred Thirty-Six Children With Developmental Hydrocephalus: Causes and Clinical Consequences. Journal of Child Neurology, 2016, 31, 309-320.	0.7	30

#	Article	IF	CITATIONS
55	WDR81 Is Necessary for Purkinje and Photoreceptor Cell Survival. Journal of Neuroscience, 2013, 33, 6834-6844.	1.7	28
56	PI3K-Yap activity drives cortical gyrification and hydrocephalus in mice. ELife, 2019, 8, .	2.8	28
57	The Engrailed-2 homeobox gene and patterning of spinocerebellar mossy fiber afferents. Developmental Brain Research, 1996, 96, 210-218.	2.1	26
58	Embryology. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 154, 29-44.	1.0	23
59	Novel Approaches to Studying the Genetic Basis of Cerebellar Development. Cerebellum, 2010, 9, 272-283.	1.4	20
60	The Developmental Brain Disorders Database (DBDB): A curated neurogenetics knowledge base with clinical and research applications. American Journal of Medical Genetics, Part A, 2014, 164, 1503-1511.	0.7	20
61	Sensory and spinal inhibitory dorsal midline crossing is independent of Robo3. Frontiers in Neural Circuits, 2015, 9, 36.	1.4	20
62	What cerebellar malformations tell us about cerebellar development. Neuroscience Letters, 2019, 688, 14-25.	1.0	20
63	Human Cerebellar Development and Transcriptomics: Implications for Neurodevelopmental Disorders. Annual Review of Neuroscience, 2022, 45, 515-531.	5.0	19
64	If the skull fits: magnetic resonance imaging and microcomputed tomography for combined analysis of brain and skull phenotypes in the mouse. Physiological Genomics, 2012, 44, 992-1002.	1.0	18
65	Hippocampal granule cell dispersion: a non-specific finding in pediatric patients with no history of seizures. Acta Neuropathologica Communications, 2020, 8, 54.	2.4	18
66	Looking at Cerebellar Malformations through Text-Mined Interactomes of Mice and Humans. PLoS Computational Biology, 2009, 5, e1000559.	1.5	17
67	Spiny mice activate unique transcriptional programs after severe kidney injury regenerating organ function without fibrosis. IScience, 2021, 24, 103269.	1.9	17
68	Early dorsomedial tissue interactions regulate gyrification of distal neocortex. Nature Communications, 2019, 10, 5192.	5.8	16
69	Systemic glycerol decreases neonatal rabbit brain and cerebellar growth independent of intraventricular hemorrhage. Pediatric Research, 2014, 75, 389-394.	1.1	15
70	Roof Plate-Derived Radial Glial-like Cells Support Developmental Growth of Rapidly Adapting Mechanoreceptor Ascending Axons. Cell Reports, 2018, 23, 2928-2941.	2.9	15
71	Evidence of disrupted rhombic lip development in the pathogenesis of Dandy–Walker malformation. Acta Neuropathologica, 2021, 142, 761-776.	3.9	15
72	Phenotypic and genetic analysis of the cerebellar mutant <i>tmgc26</i> , a new ENUâ€induced RORâ€alpha allele. European Journal of Neuroscience, 2010, 32, 707-716.	1.2	14

#	Article	IF	CITATIONS
73	In Ovo Electroporations of HH Stage 10 Chicken Embryos. Journal of Visualized Experiments, 2007, , 408.	0.2	13
74	The role of <i>Zic</i> genes in inner ear development in the mouse: Exploring mutant mouse phenotypes. Developmental Dynamics, 2014, 243, 1487-1498.	0.8	12
75	Cerebellar hypoplasia and Cohen syndrome: A confirmed association. American Journal of Medical Genetics, Part A, 2010, 152A, 2390-2393.	0.7	11
76	Model Organisms Inform the Search for the Genes and Developmental Pathology Underlying Malformations of the Human Hindbrain. Seminars in Pediatric Neurology, 2009, 16, 155-163.	1.0	9
77	Purkinje cell compartmentalization in the cerebellum of the spontaneous mutant mouse dreher. Brain Structure and Function, 2014, 219, 35-47.	1.2	9
78	The Spontaneous Ataxic Mouse Mutant Tippy is Characterized by a Novel Purkinje Cell Morphogenesis and Degeneration Phenotype. Cerebellum, 2015, 14, 292-307.	1.4	9
79	A Novel Intergenic ETnII-Î ² Insertion Mutation Causes Multiple Malformations in Polypodia Mice. PLoS Genetics, 2013, 9, e1003967.	1.5	6
80	ISDN2014_0119: Mesenchymal Foxc1 nonâ€autonomously controls cerebellar development through SDF1α XCR4 maintenance of radial glial cells. International Journal of Developmental Neuroscience, 2015, 47, 34-34.	0.7	4
81	Deficits in early neural tube identity found in CHARGE syndrome. ELife, 2013, 2, e01873.	2.8	4
82	Neurogenesis in the cerebellum. , 2020, , 349-367.		2
83	Non-synaptic Cell-Autonomous Mechanisms Underlie Neuronal Hyperactivity in a Genetic Model of PIK3CA-Driven Intractable Epilepsy. Frontiers in Molecular Neuroscience, 2021, 14, 772847.	1.4	2
84	Wormless without wingless. Nature Medicine, 2011, 17, 663-665.	15.2	1
85	Disorders of Cerebellar and Brainstem Development. , 2012, , 160-172.		1
86	Understanding Cerebellar Pattern Formation. Journal of Visualized Experiments, 2007, , 407.	0.2	0
87	Laser Capture Micro-dissection (LCM) of Neonatal Mouse Forebrain for RNA Isolation. Bio-protocol, 2020, 10, .	0.2	0
88	EPCO-26. INTEGRATIVE MULTI-OMICS IDENTIFIES CONVERGING DEVELOPMENTAL ORIGINS OF DISTINCT MEDULLOBLASTOMA SUBGROUPS. Neuro-Oncology, 2021, 23, vi7-vi7.	0.6	0