
Mari Dezawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2384217/publications.pdf Version: 2024-02-01

MADI DEZAMA

#	Article	IF	CITATIONS
1	Intravenous injection of human multilineage-differentiating stress-enduring cells alleviates mouse severe acute pancreatitis without immunosuppressants. Surgery Today, 2022, 52, 603-615.	1.5	6
2	Effects of human Muse cells on bladder inflammation, overactivity, and nociception in a chemically induced Hunner-type interstitial cystitis-like rat model. International Urogynecology Journal, 2022, 33, 1293-1301.	1.4	5
3	Intravenously delivered multilineage-differentiating stress enduring cells dampen excessive glutamate metabolism and microglial activation in experimental perinatal hypoxic ischemic encephalopathy. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 1707-1720.	4.3	24
4	Intravenous Injection of Muse Cells as a Potential Therapeutic Approach for Epidermolysis Bullosa. Journal of Investigative Dermatology, 2021, 141, 198-202.e6.	0.7	13
5	Protection of liver sinusoids by intravenous administration of human Muse cells in a rat extra-small partial liver transplantation model. American Journal of Transplantation, 2021, 21, 2025-2039.	4.7	11
6	The evaluation of the safety and efficacy of intravenously administered allogeneic multilineage-differentiating stress-enduring cells in a swine hepatectomy model. Surgery Today, 2021, 51, 634-650.	1.5	10
7	Non-Tumorigenic Pluripotent Reparative Muse Cells Provide a New Therapeutic Approach for Neurologic Diseases. Cells, 2021, 10, 961.	4.1	10
8	Muse cells as a robust source of induced pluripotent stem cells. , 2021, , 137-161.		2
9	Rescue from Stx2-Producing E.Âcoli-Associated Encephalopathy by Intravenous Injection of Muse Cells in NOD-SCID Mice. Molecular Therapy, 2020, 28, 100-118.	8.2	13
10	Intravenously Transplanted Human Multilineage-Differentiating Stress-Enduring Cells Afford Brain Repair in a Mouse Lacunar Stroke Model. Stroke, 2020, 51, 601-611.	2.0	31
11	Therapeutic benefit of Muse cells in a mouse model of amyotrophic lateral sclerosis. Scientific Reports, 2020, 10, 17102.	3.3	24
12	A Novel Type of Stem Cells Double-Positive for SSEA-3 and CD45 in Human Peripheral Blood. Cell Transplantation, 2020, 29, 096368972092357.	2.5	19
13	Quantitative Analysis of SSEA3+ Cells from Human Umbilical Cord after Magnetic Sorting. Cell Transplantation, 2019, 28, 907-923.	2.5	20
14	Direct conversion of adult human skin fibroblasts into functional Schwann cells that achieve robust recovery of the severed peripheral nerve in rats. Glia, 2019, 67, 950-966.	4.9	18
15	S1P–S1PR2 Axis Mediates Homing of Muse Cells Into Damaged Heart for Long-Lasting Tissue Repair and Functional Recovery After Acute Myocardial Infarction. Circulation Research, 2018, 122, 1069-1083.	4.5	104
16	Intravenously injected human multilineage-differentiating stress-enduring cells selectively engraft into mouse aortic aneurysms and attenuate dilatation by differentiating into multiple cell types. Journal of Thoracic and Cardiovascular Surgery, 2018, 155, 2301-2313.e4.	0.8	29
17	Cardiotrophic Growth Factor–Driven Induction of Human Muse Cells Into Cardiomyocyte-Like Phenotype. Cell Transplantation, 2018, 27, 285-298.	2.5	20
18	Human Multilineage-differentiating Stress-Enduring Cells Exert Pleiotropic Effects to Ameliorate Acute Lung Ischemia–Reperfusion Injury in a Rat Model. Cell Transplantation, 2018, 27, 979-993.	2.5	29

Mari Dezawa

#	Article	IF	CITATIONS
19	Muse Cells Are Endogenous Reparative Stem Cells. Advances in Experimental Medicine and Biology, 2018, 1103, 43-68.	1.6	26
20	Clinical Trials of Muse Cells. Advances in Experimental Medicine and Biology, 2018, 1103, 305-307.	1.6	15
21	Mobilized Muse Cells After Acute Myocardial Infarction Predict Cardiac Function and Remodeling in the Chronic Phase. Circulation Journal, 2018, 82, 561-571.	1.6	43
22	Human Muse Cells Reconstruct Neuronal Circuitry in Subacute Lacunar Stroke Model. Stroke, 2017, 48, 428-435.	2.0	84
23	Human Muse Cells, Nontumorigenic Phiripotent-Like Stem Cells, Have Liver Regeneration Capacity through Specific Homing and Cell Replacement in a Mouse Model of Liver Fibrosis. Cell Transplantation, 2017, 26, 821-840.	2.5	69
24	Beneficial Effects of Systemically Administered Human Muse Cells in Adriamycin Nephropathy. Journal of the American Society of Nephrology: JASN, 2017, 28, 2946-2960.	6.1	67
25	Neuro-regeneration therapy using human Muse cells is highly effective in a mouse intracerebral hemorrhage model. Experimental Brain Research, 2017, 235, 565-572.	1.5	30
26	The secretome of MUSE cells contains factors that may play a role in regulation of stemness, apoptosis and immunomodulation. Cell Cycle, 2017, 16, 33-44.	2.6	55
27	Therapeutic Potential of Multilineage-Differentiating Stress-Enduring Cells for Osteochondral Repair in a Rat Model. Stem Cells International, 2017, 2017, 1-8.	2.5	13
28	Muse Cells Provide the Pluripotency of Mesenchymal Stem Cells: Direct Contribution of Muse Cells to Tissue Regeneration. Cell Transplantation, 2016, 25, 849-861.	2.5	90
29	Transplantation of Unique Subpopulation of Fibroblasts, Muse Cells, Ameliorates Experimental Stroke Possibly via Robust Neuronal Differentiation. Stem Cells, 2016, 34, 160-173.	3.2	88
30	Comparison of ASCs and BMSCs combined with atelocollagen for vocal fold scar regeneration. Laryngoscope, 2016, 126, 1143-1150.	2.0	35
31	Therapeutic Effects of Human Multilineage-Differentiating Stress Enduring (MUSE) Cell Transplantation into Infarct Brain of Mice. PLoS ONE, 2015, 10, e0116009.	2.5	57
32	Human Adipose Tissue Possesses a Unique Population of Pluripotent Stem Cells with Nontumorigenic and Low Telomerase Activities: Potential Implications in Regenerative Medicine. Stem Cells and Development, 2014, 23, 717-728.	2.1	128
33	Mesenchymal Stem Cells and Their Subpopulation, Pluripotent Muse Cells, in Basic Research and Regenerative Medicine. Anatomical Record, 2014, 297, 98-110.	1.4	46
34	Functional Melanocytes Are Readily Reprogrammable from Multilineage-Differentiating Stress-Enduring (Muse) Cells, Distinct Stem Cells in Human Fibroblasts. Journal of Investigative Dermatology, 2013, 133, 2425-2435.	0.7	60
35	Isolation, culture and evaluation of multilineage-differentiating stress-enduring (Muse) cells. Nature Protocols, 2013, 8, 1391-1415.	12.0	158
36	Multilineage-differentiating stress-enduring (Muse) cells are a primary source of induced pluripotent stem cells in human fibroblasts. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9875-9880.	7.1	253

Mari Dezawa

#	Article	IF	CITATIONS
37	Bone Marrow Mesenchymal Cells: How Do They Contribute to Tissue Repair and Are They Really Stem Cells?. Archivum Immunologiae Et Therapiae Experimentalis, 2011, 59, 369-378.	2.3	82
38	Human Umbilical Cord-Derived Mesenchymal Stromal Cells Differentiate Into Functional Schwann Cells That Sustain Peripheral Nerve Regeneration. Journal of Neuropathology and Experimental Neurology, 2010, 69, 973-985.	1.7	100
39	Long-term observation of auto-cell transplantation in non-human primate reveals safety and efficiency of bone marrow stromal cell-derived Schwann cells in peripheral nerve regeneration. Experimental Neurology, 2010, 223, 537-547.	4.1	107
40	Unique multipotent cells in adult human mesenchymal cell populations. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8639-8643.	7.1	428
41	Induction system of neural and muscle lineage cells from bone marrow stromal cells; a new strategy for tissue reconstruction in degenerative diseases. Histology and Histopathology, 2009, 24, 631-42.	0.7	12
42	Peripheral nerve regeneration by the in vitro differentiated-human bone marrow stromal cells with Schwann cell property. Biochemical and Biophysical Research Communications, 2007, 359, 915-920.	2.1	133
43	Transplantation of Bone Marrow Stromal Cell-Derived Schwann Cells Promotes Axonal Regeneration and Functional Recovery after Complete Transection of Adult Rat Spinal Cord. Journal of Neuropathology and Experimental Neurology, 2005, 64, 37-45.	1.7	117
44	Sciatic nerve regeneration in rats induced by transplantation of <i>in vitro</i> differentiated boneâ€marrow stromal cells. European Journal of Neuroscience, 2001, 14, 1771-1776.	2.6	463
45	Normal Human Fibroblasts Immortalized by Introduction of Human Papillomavirus Type 16 (HPVâ€16) E6â€E7 Genes. Microbiology and Immunology, 1997, 41, 313-319.	1.4	18
46	Immunohistochemical localization of cell adhesion molecules and cell-cell contact proteins during regeneration of the rat optic nerve induced by sciatic nerve autotransplantation. , 1996, 246, 114-126.		22
47	Immunohistochemical localization of cell adhesion molecules and cellâ€cell contact proteins during regeneration of the rat optic nerve induced by sciatic nerve autotransplantation. The Anatomical Record, 1996, 246, 114-126.	1.8	1
48	Distribution of actin-filament bundles in myoid cells, Sertoli cells, and tunica albuginea of rat and mouse testes. Cell and Tissue Research, 1991, 266, 295-300.	2.9	15