Shanyu Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2383378/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biomimetic Lightâ€Driven Aerogel Passive Pump for Volatile Organic Pollutant Removal. Advanced Science, 2022, 9, e2105819.	11.2	13
2	Heterogeneous silica-polyimide aerogel-in-aerogel nanocomposites. Chemical Engineering Journal, 2022, 443, 136401.	12.7	35
3	Superinsulating nanocellulose aerogels: Effect of density and nanofiber alignment. Carbohydrate Polymers, 2022, 292, 119675.	10.2	14
4	Thermal-Switchable, Trifunctional Ceramic–Hydrogel Nanocomposites Enable Full-Lifecycle Security in Practical Battery Systems. ACS Nano, 2022, 16, 10729-10741.	14.6	30
5	Chemie der Chitosanâ€Aerogele: Lenkung der dreidimensionalen Poren für maßgeschneiderte Anwendungen. Angewandte Chemie, 2021, 133, 9913-9938.	2.0	0
6	Chemistry of Chitosan Aerogels: Threeâ€Dimensional Pore Control for Tailored Applications. Angewandte Chemie - International Edition, 2021, 60, 9828-9851.	13.8	98
7	Transparent, Aldehyde-Free Chitosan Aerogel. Carbohydrate Polymers, 2021, 251, 117089.	10.2	34
8	Printed aerogels: chemistry, processing, and applications. Chemical Society Reviews, 2021, 50, 3842-3888.	38.1	128
9	Template-free synthesis of hybrid silica nanoparticle with functionalized mesostructure for efficient methylene blue removal. Materials and Design, 2021, 201, 109494.	7.0	20
10	Ureido Functionalization through Amine-Urea Transamidation under Mild Reaction Conditions. Polymers, 2021, 13, 1583.	4.5	4
11	Robust Barium Phosphonate Metal–Organic Frameworks Synthesized under Aqueous Conditions. , 2021, 3, 1010-1015.		3
12	Aerogel Springâ€Back Correlates with Strain Recovery: Effect of Silica Concentration and Aging. Advanced Engineering Materials, 2021, 23, 2100376.	3.5	13
13	Tailoring the hydrophobicity of wrinkled silica nanoparticles and of the adsorption medium as a strategy for immobilizing lipase: An efficient catalyst for biofuel production. Microporous and Mesoporous Materials, 2021, 328, 111504.	4.4	12
14	Durability of silica aerogel cementitious composites – freeze–thaw resistance, water resistance and drying shrinkage. Advances in Cement Research, 2020, 32, 527-536.	1.6	17
15	Phase transfer agents facilitate the production of superinsulating silica aerogel powders by simultaneous hydrophobization and solvent- and ion-exchange. Chemical Engineering Journal, 2020, 381, 122421.	12.7	19
16	Polymer-Assisted Fabrication of Silver Nanowire Cellular Monoliths: Toward Hydrophobic and Ultraflexible High-Performance Electromagnetic Interference Shielding Materials. ACS Applied Materials & Interfaces, 2020, 12, 38584-38592.	8.0	38
17	Additive manufacturing of silica aerogels. Nature, 2020, 584, 387-392.	27.8	323
18	Silica aerogels with tailored chemical functionality. Materials and Design, 2020, 193, 108833.	7.0	53

Shanyu Zhao

#	Article	IF	CITATIONS
19	Solvents, CO2 and biopolymers: Structure formation in chitosan aerogel. Carbohydrate Polymers, 2020, 247, 116680.	10.2	17
20	Flexible and Ultrathin Waterproof Cellular Membranes Based on Highâ€Conjunction Metalâ€Wrapped Polymer Nanofibers for Electromagnetic Interference Shielding. Advanced Materials, 2020, 32, e1908496.	21.0	234
21	Strong, Machinable, and Insulating Chitosan–Urea Aerogels: Toward Ambient Pressure Drying of Biopolymer Aerogel Monoliths. ACS Applied Materials & Interfaces, 2020, 12, 22037-22049.	8.0	71
22	Study of physical properties and microstructure of aerogel-cement mortars for improving the fire safety of high-performance concrete linings in tunnels. Cement and Concrete Composites, 2019, 104, 103414.	10.7	44
23	Reinforced and superinsulating silica aerogel through in situ cross-linking with silane terminated prepolymers. Acta Materialia, 2018, 147, 322-328.	7.9	28
24	Biopolymerâ€Aerogele und â€5chäme: Chemie, Eigenschaften und Anwendungen. Angewandte Chemie, 2018, 130, 7704-7733.	2.0	21
25	Biopolymer Aerogels and Foams: Chemistry, Properties, and Applications. Angewandte Chemie - International Edition, 2018, 57, 7580-7608.	13.8	470
26	Hydrophobic TiO ₂ ‣iO ₂ Aerogel Composites for Fast Removal of Organic Pollutants. ChemistrySelect, 2018, 3, 10483-10490.	1.5	8
27	Merging flexibility with superinsulation: Machinable, nanofibrous pullulan-silica aerogel composites. Materials and Design, 2018, 160, 294-302.	7.0	23
28	High Efficiency Thermoacoustic Loudspeaker Made with a Silica Aerogel Substrate. Advanced Materials Technologies, 2018, 3, 1800139.	5.8	11
29	Fast and Minimalâ€Solvent Production of Superinsulating Silica Aerogel Granulate. Angewandte Chemie, 2017, 129, 4831-4834.	2.0	14
30	Fast and Minimal olvent Production of Superinsulating Silica Aerogel Granulate. Angewandte Chemie - International Edition, 2017, 56, 4753-4756.	13.8	99
31	Microwave-assisted hydrothermal synthesis of carbon materials with tunable microstructure. Journal Wuhan University of Technology, Materials Science Edition, 2017, 32, 1032-1037.	1.0	2
32	Dynamics of Silica Aerogel's Hydrophobic Groups: A Quasielastic Neutron Scattering Study. Journal of Physical Chemistry C, 2017, 121, 20335-20344.	3.1	6
33	Carbon Dots and Fluorescein: The Ideal FRET Pair for the Fabrication of a Precise and Fully Reversible Ammonia Sensor. Proceedings (mdpi), 2017, 1, 488.	0.2	1
34	A Novel Environmental Route to Ambient Pressure Dried Thermal Insulating Silica Aerogel via Recycled Coal Gangue. Advances in Materials Science and Engineering, 2016, 2016, 1-9.	1.8	10
35	Thermal assessment of ambient pressure dried silica aerogel composite boards at laboratory and field scale. Energy and Buildings, 2016, 128, 111-118.	6.7	65
36	Breakthroughs in cost-effective, scalable production of superinsulating, ambient-dried silica aerogel and silica-biopolymer hybrid aerogels: from laboratory to pilot scale. Journal of Sol-Gel Science and Technology, 2016, 79, 308-318.	2.4	52

Shanyu Zhao

#	Article	IF	CITATIONS
37	Facile One-Pot Synthesis of Mechanically Robust Biopolymer–Silica Nanocomposite Aerogel by Cogelation of Silicic Acid with Chitosan in Aqueous Media. ACS Sustainable Chemistry and Engineering, 2016, 4, 5674-5683.	6.7	68
38	Structural characteristics and photocatalytic activity of ambient pressure dried SiO2/TiO2 aerogel composites by one-step solvent exchange/surface modification. Journal Wuhan University of Technology, Materials Science Edition, 2016, 31, 80-86.	1.0	10
39	Strong, Thermally Superinsulating Biopolymer–Silica Aerogel Hybrids by Cogelation of Silicic Acid with Pectin. Angewandte Chemie - International Edition, 2015, 54, 14282-14286.	13.8	132
40	Synthesis and thermal insulation performance of silica aerogel from recycled coal gangue by means of ambient pressure drying. Journal Wuhan University of Technology, Materials Science Edition, 2015, 30, 908-913.	1.0	13
41	Multiscale Assembly of Superinsulating Silica Aerogels Within Silylated Nanocellulosic Scaffolds: Improved Mechanical Properties Promoted by Nanoscale Chemical Compatibilization. Advanced Functional Materials, 2015, 25, 2326-2334.	14.9	229
42	Dimensional and Structural Control of Silica Aerogel Membranes for Miniaturized Motionless Gas Pumps. ACS Applied Materials & Interfaces, 2015, 7, 18803-18814.	8.0	28
43	Surface Chemistry of Hydrophobic Silica Aerogels. Chemistry of Materials, 2015, 27, 6737-6745.	6.7	100
44	Facile ambient temperature synthesis and characterization of a stable nano-sized hollow silica particles using soluble-poly(methacrylic acid) sodium salt templating. Materials Letters, 2014, 126, 92-96.	2.6	7
45	Influence of drying methods on fractal geometric characteristics of mesoporous silica aerogels. Journal Wuhan University of Technology, Materials Science Edition, 2013, 28, 476-482.	1.0	1
46	Synthesis of a sugar-organometallic compound 1,1′-difurfurylferrocene and its microwave preparation of carbon/iron oxide nanocomposite. Applied Surface Science, 2013, 264, 242-246.	6.1	4
47	Synthesis of novel chitaline–silica aerogels with spontaneous Au and Ag nanoparticles formation in aerogels matrix. Microporous and Mesoporous Materials, 2013, 171, 147-155.	4.4	10
48	Synthesis and characteristics of mesoporous silica aerogels with one-step solvent exchange/surface modification. Journal Wuhan University of Technology, Materials Science Edition, 2009, 24, 613-618.	1.0	21