Michael Ingleson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2382920/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhanced N-directed electrophilic C–H borylation generates BN–[5]- and [6]helicenes with improved photophysical properties. Chemical Science, 2022, 13, 1136-1145.	7.4	23
2	Developing organoboranes as phase transfer catalysts for nucleophilic fluorination using CsF. Chemical Science, 2022, 13, 2661-2668.	7.4	7
3	Borylation Directed Borylation of Indoles Using Pyrazabole Electrophiles: A Oneâ€Pot Route to C7â€Borylatedâ€Indolines. Angewandte Chemie - International Edition, 2022, 61, .	13.8	16
4	Borylation Directed Borylation of Indoles Using Pyrazabole Electrophiles: A Oneâ€Pot Route to C7â€Borylatedâ€Indolines. Angewandte Chemie, 2022, 134, .	2.0	5
5	Haloboration: scope, mechanism and utility. New Journal of Chemistry, 2021, 45, 14855-14868.	2.8	19
6	Controlling selectivity in N-heterocycle directed borylation of indoles. Organic and Biomolecular Chemistry, 2021, 19, 2949-2958.	2.8	24
7	Zinc catalysed electrophilic C–H borylation of heteroarenes. Chemical Science, 2021, 12, 8190-8198.	7.4	19
8	Formation of a hydride containing amido-zincate using pinacolborane. Dalton Transactions, 2021, 50, 14018-14026.	3.3	3
9	Intramolecular (directed) electrophilic C–H borylation. Chemical Society Reviews, 2020, 49, 4564-4591.	38.1	140
10	The synthesis of brominated-boron-doped PAHs by alkyne 1,1-bromoboration: mechanistic and functionalisation studies. Chemical Science, 2020, 11, 3258-3267.	7.4	35
11	A Comparison of Two Zinc Hydride Catalysts for Terminal Alkyne C–H Borylation/Hydroboration and the Formation of 1,1,1-Triborylalkanes by Tandem Catalysis Using Zn–H and B–H Compounds. Organometallics, 2020, 39, 1332-1338.	2.3	36
12	Metal-free acyl-directed electrophilic C-H borylation using just BBr3. Science China Chemistry, 2019, 62, 1547-1548.	8.2	8
13	Acylâ€Directed <i>ortho</i> â€Borylation of Anilines and C7 Borylation of Indoles using just BBr ₃ . Angewandte Chemie, 2019, 131, 15525-15529.	2.0	20
14	Acylâ€Directed <i>ortho</i> â€Borylation of Anilines and C7 Borylation of Indoles using just BBr ₃ . Angewandte Chemie - International Edition, 2019, 58, 15381-15385.	13.8	81
15	Reductive α-borylation of α,β-unsaturated esters using NHC–BH ₃ activated by I ₂ as a metal-free route to α-boryl esters. Chemical Science, 2019, 10, 1434-1441.	7.4	22
16	Benzoselenadiazole and benzotriazole directed electrophilic C–H borylation of conjugated donor–acceptor materials. Journal of Materials Chemistry C, 2019, 7, 718-724.	5.5	22
17	Borylative cyclisation of diynes using BCl ₃ and borocations. Organic and Biomolecular Chemistry, 2019, 17, 5520-5525.	2.8	15
18	Low-Coordinate NHC–Zinc Hydride Complexes Catalyze Alkyne C–H Borylation and Hydroboration Using Pinacolborane, ACS Catalysis, 2019, 9, 5760-5771.	11.2	98

#	Article	IF	CITATIONS
19	Well-Defined Boron/Nitrogen-Doped Polycyclic Aromatic Hydrocarbons Are Active Electrocatalysts for the Oxygen Reduction Reaction. Chemistry of Materials, 2019, 31, 1891-1898.	6.7	42
20	In Vivo Optical Performance of a New Class of Near-Infrared-Emitting Conjugated Polymers: Borylated PF8-BT. ACS Applied Materials & Interfaces, 2019, 11, 46525-46535.	8.0	15
21	Air- and water-stable Lewis acids: synthesis and reactivity of P-trifluoromethyl electrophilic phosphonium cations. Chemical Communications, 2018, 54, 662-665.	4.1	38
22	Recent Advances in Water-Tolerance in Frustrated Lewis Pair Chemistry. Synthesis, 2018, 50, 1783-1795.	2.3	39
23	Phosphorous(<scp>v</scp>) Lewis acids: water/base tolerant P ₃ -trimethylated trications. Chemical Communications, 2018, 54, 12467-12470.	4.1	15
24	Selective Borylâ€Anion Migration in a Vinyl sp 2 â^'sp 3 Diborane Induced by Soft Borane Lewis Acids. Angewandte Chemie, 2018, 130, 13477-13481.	2.0	9
25	Synthesis, Characterization, and Functionalization of 1â€Boraphenalenes. Angewandte Chemie, 2018, 130, 8216-8220.	2.0	23
26	Câ^'H Borylation/Cross oupling Forms Twisted Donor–Acceptor Compounds Exhibiting Donorâ€Dependent Delayed Emission. Chemistry - A European Journal, 2018, 24, 10521-10530.	3.3	4
27	Synthesis, Characterization, and Functionalization of 1â€Boraphenalenes. Angewandte Chemie - International Edition, 2018, 57, 8084-8088.	13.8	49
28	Selective Borylâ€Anion Migration in a Vinyl sp 2 â^'sp 3 Diborane Induced by Soft Borane Lewis Acids. Angewandte Chemie - International Edition, 2018, 57, 13293-13297.	13.8	27
29	Generation of a series of B _n fused oligo-naphthalenes (<i>n</i> = 1 to 3) from a B ₁ -polycyclic aromatic hydrocarbon. Chemical Communications, 2018, 54, 9490-9493.	4.1	16
30	Synthesis of Unsymmetrical Diboron(5) Compounds and Their Conversion to Diboron(5) Cations. Organometallics, 2018, 37, 1992-1998.	2.3	10
31	Diboryldiborenes: π onjugated B ₄ Chains Isoelectronic to the Butadiene Dication. Angewandte Chemie - International Edition, 2018, 57, 10091-10095.	13.8	29
32	Diboryldiborene: Ï€â€konjugierte B ₄ â€Ketten isoelektronisch zum Butadienâ€Dikation. Angewandte Chemie, 2018, 130, 10248-10252.	2.0	15
33	BCl ₃ â€Induced Annulative Oxo―and Thioboration for the Formation of C3â€Borylated Benzofurans and Benzothiophenes. Angewandte Chemie, 2017, 129, 360-364.	2.0	24
34	Mechanistic Insights into the B(C ₆ F ₅) ₃ -Initiated Aldehyde–Aniline–Alkyne Reaction To Form Substituted Quinolines. Organometallics, 2017, 36, 1623-1629.	2.3	30
35	Catalytic Electrophilic Câ^'H Borylation Using NHCâ‹Boranes and Iodine Forms C2â€, not C3â€, Borylated Indoles. Chemistry - A European Journal, 2017, 23, 8180-8184.	3.3	45
36	Borylated Arylamine–Benzothiadiazole Donor–Acceptor Materials as Low-LUMO, Low-Band-Gap Chromophores. Organometallics, 2017, 36, 2597-2604.	2.3	25

#	Article	IF	CITATIONS
37	BCl ₃ â€Induced Annulative Oxo―and Thioboration for the Formation of C3â€Borylated Benzofurans and Benzothiophenes. Angewandte Chemie - International Edition, 2017, 56, 354-358.	13.8	76
38	Frustrated Lewis Pair Mediated 1,2â€Hydrocarbation of Alkynes. Angewandte Chemie, 2017, 129, 9330-9334.	2.0	4
39	Frustrated Lewis Pair Mediated 1,2â€Hydrocarbation of Alkynes. Angewandte Chemie - International Edition, 2017, 56, 9202-9206.	13.8	21
40	Expanding Water/Base Tolerant Frustrated Lewis Pair Chemistry to Alkylamines Enables Broad Scope Reductive Aminations. Chemistry - A European Journal, 2017, 23, 2217-2224.	3.3	64
41	A modular route to boron doped PAHs by combining borylative cyclisation and electrophilic C–H borylation. Chemical Science, 2017, 8, 7969-7977.	7.4	57
42	A Zinc Catalyzed C(sp ³)â^'C(sp ²) Suzuki–Miyaura Cross oupling Reaction Mediated by Arylâ€Zincates. Chemistry - A European Journal, 2017, 23, 15889-15893.	3.3	32
43	Use of <i>N</i> â€methyliminodiacetic acid boronate esters in suzukiâ€miyaura crossâ€coupling polymerizations of triarylamine and fluorene monomers. Journal of Polymer Science Part A, 2017, 55, 2798-2806.	2.3	6
44	Post-polymerization C–H Borylation of Donor–Acceptor Materials Gives Highly Efficient Solid State Near-Infrared Emitters for Near-IR-OLEDs and Effective Biological Imaging. ACS Applied Materials & Interfaces, 2017, 9, 28243-28249.	8.0	53
45	N-Heterocycle-Ligated Borocations as Highly Tunable Carbon Lewis Acids. Organometallics, 2017, 36, 4952-4960.	2.3	26
46	<i>N</i> â€Methylâ€Benzothiazolium Salts as Carbon Lewis Acids for Siâ^'H σâ€Bond Activation and Catalytic (De)hydrosilylation. Chemistry - A European Journal, 2017, 23, 187-193.	3.3	34
47	Three-Coordinate Iron(II) Expanded Ring N-Heterocyclic Carbene Complexes. Organometallics, 2016, 35, 1098-1106.	2.3	24
48	Inter- and intra-molecular C–H borylation for the formation of PAHs containing triarylborane and indole units. Dalton Transactions, 2016, 45, 17160-17167.	3.3	34
49	A General Protocol for the Polycondensation of Thienyl <i>N</i> -Methyliminodiacetic Acid Boronate Esters To Form High Molecular Weight Copolymers. Journal of the American Chemical Society, 2016, 138, 13361-13368.	13.7	25
50	Highly Emissive Far Red/Nearâ€IR Fluorophores Based on Borylated Fluorene–Benzothiadiazole Donor–Acceptor Materials. Chemistry - A European Journal, 2016, 22, 12439-12448.	3.3	36
51	Metal-free electrocatalytic hydrogen oxidation using frustrated Lewis pairs and carbon-based Lewis acids. Chemical Science, 2016, 7, 2537-2543.	7.4	28
52	Highly selective catalytic trans-hydroboration of alkynes mediated by borenium cations and B(C ₆ F ₅) ₃ . Chemical Science, 2016, 7, 3384-3389.	7.4	116
53	B(C ₆ F ₅) ₃ -Catalyzed Reductive Amination using Hydrosilanes. ACS Catalysis, 2016, 6, 1793-1798.	11.2	103
54	The carboboration of Me3Si-substituted alkynes and allenes with boranes and borocations. Dalton Transactions, 2016, 45, 6060-6070.	3.3	25

#	Article	IF	CITATIONS
55	Formation of C(sp ²)Boronate Esters by Borylative Cyclization of Alkynes Using BCl ₃ . Angewandte Chemie - International Edition, 2015, 54, 11245-11249.	13.8	93
56	Room Temperature Ring Expansion of Nâ€Heterocyclic Carbenes and BB Bond Cleavage of Diboron(4) Compounds. Chemistry - A European Journal, 2015, 21, 9018-9021.	3.3	80
57	Fundamental and Applied Properties of Borocations. Topics in Organometallic Chemistry, 2015, , 39-71.	0.7	59
58	Facile Arylation of Four-Coordinate Boron Halides by Borenium Cation Mediated Boro-desilylation and -destannylation. Organometallics, 2015, 34, 5767-5774.	2.3	46
59	Complete reductive cleavage of CO facilitated by highly electrophilic borocations. Chemical Communications, 2015, 51, 10903-10906.	4.1	15
60	Highly nucleophilic dipropanolamine chelated boron reagents for aryl-transmetallation to iron complexes. Dalton Transactions, 2015, 44, 20577-20583.	3.3	12
61	Regioselective electrophilic borylation of haloarenes. Chemical Communications, 2015, 51, 2878-2881.	4.1	73
62	Thienyl MIDA Boronate Esters as Highly Effective Monomers for Suzuki–Miyaura Polymerization Reactions. Macromolecules, 2015, 48, 979-986.	4.8	38
63	Fused polycyclic aromatics incorporating boron in the core: fundamentals and applications. Chemical Communications, 2015, 51, 6257-6274.	4.1	211
64	Enhancing electron affinity and tuning band gap in donor–acceptor organic semiconductors by benzothiadiazole directed C–H borylation. Chemical Science, 2015, 6, 5144-5151.	7.4	134
65	1,1/1,2 Isomerisation in Lewis base adducts of B ₂ cat ₂ . Dalton Transactions, 2015, 44, 7506-7511.	3.3	20
66	Direct C(sp ²)C(sp ³) Cross oupling of Diaryl Zinc Reagents with Benzylic, Primary, Secondary, and Tertiary Alkyl Halides. Angewandte Chemie - International Edition, 2015, 54, 5688-5692.	13.8	57
67	B(C ₆ F ₅) ₃ -Catalyzed Synthesis of Benzofused-Siloles. Organometallics, 2014, 33, 7241-7246.	2.3	72
68	<i>synâ€</i> 1,2 arboboration of Alkynes with Borenium Cations. Chemistry - A European Journal, 2014, 20, 12874-12880.	3.3	64
69	Reactivity of (NHC) ₂ FeX ₂ Complexes toward Arylborane Lewis Acids and Arylboronates. Organometallics, 2014, 33, 370-377.	2.3	25
70	E–H (E = R ₃ Si or H) bond activation by B(C ₆ F ₅) ₃ and heteroarenes; competitive dehydrosilylation, hydrosilylation and hydrogenation. Chemical Communications, 2014, 50, 5270-5272.	4.1	67
71	<i>N</i> â€Methylacridinium Salts: Carbon Lewis Acids in Frustrated Lewis Pairs for Ïfâ€Bond Activation and Catalytic Reductions. Angewandte Chemie - International Edition, 2014, 53, 11306-11309.	13.8	89
72	Mechanistic Studies into Amine-Mediated Electrophilic Arene Borylation and Its Application in MIDA Boronate Synthesis. Journal of the American Chemical Society, 2013, 135, 474-487.	13.7	192

#	Article	IF	CITATIONS
73	Boron, aluminium, gallium, indium and thallium. Annual Reports on the Progress of Chemistry Section A, 2013, 109, 28.	0.8	8
74	Haloboration of Internal Alkynes with Boronium and Borenium Cations as a Route to Tetrasubstituted Alkenes. Angewandte Chemie - International Edition, 2013, 52, 7518-7522.	13.8	93
75	[(acridine)BCl ₂] ⁺ : A Borenium Cation That Is a Strong Boron- and Carbon-Based Lewis Acid. Organometallics, 2013, 32, 6712-6717.	2.3	74
76	The Hydrideâ€ion Affinity of Borenium Cations and Their Propensity to Activate H ₂ in Frustrated Lewis Pairs. Chemistry - A European Journal, 2013, 19, 2462-2466.	3.3	125
77	A Perspective on Direct Electrophilic Arene Borylation. Synlett, 2012, 23, 1411-1415.	1.8	78
78	Tricationic analogues of boroxines and polyborate anions. Chemical Communications, 2012, 48, 7589.	4.1	23
79	Reactivity of Lewis Acid Activated Diaza- and Dithiaboroles in Electrophilic Arene Borylation. Organometallics, 2012, 31, 1908-1916.	2.3	75
80	Synthesis and solvent dependent reactivity of chelating bis-N-heterocyclic carbene complexes of Fe(II) hydrides. Dalton Transactions, 2012, 41, 2685.	3.3	33
81	N-Heterocyclic carbene chemistry of iron: fundamentals and applications. Chemical Communications, 2012, 48, 3579.	4.1	183
82	Simple inexpensive boron electrophiles for direct arene borylation. Chemical Communications, 2011, 47, 12459.	4.1	110
83	Synthesis, Structures, and Reactivity of Chelating Bis-N-Heterocyclic-Carbene Complexes of Iron(II). Organometallics, 2011, 30, 4974-4982.	2.3	70
84	Pinacol Boronates by Direct Arene Borylation with Borenium Cations. Angewandte Chemie - International Edition, 2011, 50, 2102-2106.	13.8	186
85	Chemical Bonding Assembly of Multifunctional Oxide Nanocomposites. Advanced Functional Materials, 2010, 20, 231-238.	14.9	30
86	Chelate Restrained Boron Cations for Intermolecular Electrophilic Arene Borylation. Organometallics, 2010, 29, 241-249.	2.3	145
87	Magnesium Borohydride Confined in a Metal–Organic Framework: A Preorganized System for Facile Arene Hydroboration. Angewandte Chemie - International Edition, 2009, 48, 2012-2016.	13.8	39
88	Nitric Oxide Chemisorption in a Postsynthetically Modified Metalâ^'Organic Framework. Inorganic Chemistry, 2009, 48, 9986-9988.	4.0	115
89	Framework functionalisation triggers metal complex binding. Chemical Communications, 2008, , 2680.	4.1	280
90	Generation of a solid BrÃ,nsted acid site in a chiral framework. Chemical Communications, 2008, , 1287.	4.1	203

#	Article	IF	CITATIONS
91	Redox Chemistry of the Triplet Complex (PNP)Co ^I . Journal of the American Chemical Society, 2008, 130, 4262-4276.	13.7	61
92	Influence of the d-Electron Count on CO Binding by Three-Coordinate [(^t Bu ₂ PCH ₂ SiMe ₂) ₂ N]Fe, -Co, and -Ni. Inorganic Chemistry, 2008, 47, 407-409.	4.0	78
93	Exploring the Reactivity of Four-Coordinate PNPCoX with Access to Three-Coordinate Spin Triplet PNPCo. Inorganic Chemistry, 2007, 46, 10321-10334.	4.0	49
94	Homochiral H-bonded proline based metal organic frameworks. Chemical Communications, 2007, , 3036.	4.1	65
95	Reducing Power of Three-Coordinate Cobalt(I). Journal of the American Chemical Society, 2006, 128, 4248-4249.	13.7	50
96	Three-Coordinate Co(I) Provides Access to Unsaturated Dihydrido-Co(III) and Seven-Coordinate Co(V). Journal of the American Chemical Society, 2006, 128, 1804-1805.	13.7	123
97	[(tBu2PCH2SiMe2)2N]RuMe2:Â Synthesis and Reactivity of an Unsaturated Ruthenium Dialkyl Radical Species. Organometallics, 2006, 25, 1112-1119.	2.3	17
98	High Hydride Count Rhodium Octahedra, [Rh6(PR3)6H12][BArF4]2: Synthesis, Structures, and Reversible Hydrogen Uptake under Mild Conditions. Journal of the American Chemical Society, 2006, 128, 6247-6263.	13.7	66
99	B–C activation in highly alkylated carborane monoanions partnered with cationic transition metal fragments: observations and comments. Inorganica Chimica Acta, 2005, 358, 1571-1580.	2.4	19
100	Holding onto Lots of Hydrogen: A 12-Hydride Rhodium Cluster That Reversibly Adds Two Molecules of H2. Angewandte Chemie - International Edition, 2005, 44, 6875-6878.	13.8	41
101	Dihydrogen Complexes of Rhodium:Â [RhH2(H2)x(PR3)2]+(R = Cy,iPr;x= 1, 2). Inorganic Chemistry, 2005, 44, 3162-3171.	4.0	55
102	[(tBu2PCH2SiMe2)2N]RuCH3:Â The Origin of Extremely Facile, Double Hâ^'C(sp3) Activation Generating a "Hydrido-Carbene―Complex. Journal of the American Chemical Society, 2005, 127, 10846-10847.	13.7	27
103	N2Provides Insight into the Mechanism of Hâ^'C(sp3) Bond Cleavage. Journal of the American Chemical Society, 2005, 127, 16780-16781.	13.7	34
104	[(iPr3P)6Rh6H12]2+:  A High-Hydride Content Octahedron that Bridges the Gap between Late and Early Transition Metal Clusters. Journal of the American Chemical Society, 2004, 126, 4784-4785.	13.7	59
105	Silverâ^'Phosphine Complexes of the Highly Methylated Carborane Monoanion [closo-1-H-CB11Me11] Journal of the American Chemical Society, 2004, 126, 1503-1517.	13.7	57
106	[PtMe(iPr3P)2]+: a Pt(ii) complex with an agostic interaction that undergoes C–H activation. Chemical Communications, 2004, , 2398-2399.	4.1	83
107	Investigation of the synthesis of {Mo(η5-C5H5)(CO)3}+fragments partnered with the monoanionic carboranes [closo-CB11H11Br]â^, [closo-CB11H6Br6]â^and [closo-HCB11Me11]â^by silver salt metathesis and hydride abstraction. Dalton Transactions, 2003, , 2894-2904.	3.3	26
108	[Cp2ZrMe(12-μ-Me-1-closo-CB11HMe10)]: a transition metal complex of a highly-methylated carborane anion. Chemical Communications, 2003, , 1930-1931.	4.1	19

#	Article	IF	CITATIONS
109	[(PPh3)Ag(HCB11Me11)]: A Complex with Intermolecular Agâ‹â‹â‹H3C Interactions. Angewandte Chemie - International Edition, 2002, 41, 3694-3697.	13.8	41
110	Chelating Monoborane Phosphines:  Rational and High-Yield Synthesis of [(COD)Rh{(η2-BH3)Ph2PCH2PPh2}][PF6] (COD = 1,5-cyclooctadiene). Organometallics, 2001, 20, 4434-4436.	2.3	48
111	XtalFluorâ€E effects the C3â€H sulfenylation of indoles to form diâ€indole sulfides. European Journal of Organic Chemistry, 0, , .	2.4	1