
Zhiping Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2382760/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A bone-targeted engineered exosome platform delivering siRNA to treat osteoporosis. Bioactive Materials, 2022, 10, 207-221.	8.6	79
2	Enhancing cancer chemo-immunotherapy by biomimetic nanogel with tumor targeting capacity and rapid drug-releasing in tumor microenvironment. Acta Pharmaceutica Sinica B, 2022, 12, 2550-2567.	5.7	22
3	Bioreactor: Intelligent platform for drug delivery. Nano Today, 2022, 44, 101481.	6.2	10
4	All-in-one approaches for triple-negative breast cancer therapy: metal-phenolic nanoplatform for MR imaging-guided combinational therapy. Journal of Nanobiotechnology, 2022, 20, 226.	4.2	11
5	Microplastics interact with SARS-CoV-2 and facilitate host cell infection. Environmental Science: Nano, 2022, 9, 2653-2664.	2.2	9
6	Yeast Microcapsule Mediated Natural Products Delivery for Treating Ulcerative Colitis through Anti-Inflammatory and Regulation of Macrophage Polarization. ACS Applied Materials & Interfaces, 2022, 14, 31085-31098.	4.0	22
7	Bioinspired Nanovesicles Convert the Skeletal Endothelium-Associated Secretory Phenotype to Treat Osteoporosis. ACS Nano, 2022, 16, 11076-11091.	7.3	20
8	Immunogenic Hybrid Nanovesicles of Liposomes and Tumor-Derived Nanovesicles for Cancer Immunochemotherapy. ACS Nano, 2021, 15, 3123-3138.	7.3	90
9	Progress and Prospects of Regulatory Functions Mediated by Nitric Oxide on Immunity and Immunotherapy. Advanced Therapeutics, 2021, 4, 2100032.	1.6	10
10	Nanomedicine for acute respiratory distress syndrome: The latest application, targeting strategy, and rational design. Acta Pharmaceutica Sinica B, 2021, 11, 3060-3091.	5.7	74
11	Reinforcing the Combinational Immuno-Oncotherapy of Switching "Cold―Tumor to "Hot―by Responsive Penetrating Nanogels. ACS Applied Materials & Interfaces, 2021, 13, 36824-36838.	4.0	24
12	Combination of Chidamide-Mediated Epigenetic Modulation with Immunotherapy: Boosting Tumor Immunogenicity and Response to PD-1/PD-L1 Blockade. ACS Applied Materials & Interfaces, 2021, 13, 39003-39017.	4.0	31
13	Metal ions-mediated self-assembly of nanomedicine for combinational therapy against triple-negative breast cancer. Chemical Engineering Journal, 2021, 425, 131420.	6.6	13
14	Applications of Magnetite Nanoparticles in Cancer Immunotherapies: Present Hallmarks and Future Perspectives. Frontiers in Immunology, 2021, 12, 701485.	2.2	3
15	L-EGCG-Mn nanoparticles as a pH-sensitive MRI contrast agent. Drug Delivery, 2021, 28, 126-135.	2.5	4
16	Cellâ€Derived Biogenetic Gold Nanoparticles for Sensitizing Radiotherapy and Boosting Immune Response against Cancer. Small, 2021, 17, e2103984.	5.2	38
17	A magnetic resonance nanoprobe with STING activation character collaborates with platinum-based drug for enhanced tumor immunochemotherapy. Journal of Nanobiotechnology, 2021, 19, 415.	4.2	3
18	Cdk5 knocking out mediated by CRISPR-Cas9 genome editing for PD-L1 attenuation and enhanced antitumor immunity. Acta Pharmaceutica Sinica B, 2020, 10, 358-373.	5.7	61

#	Article	IF	CITATIONS
19	The novel platinum(IV) prodrug with self-assembly property and structure-transformable character against triple-negative breast cancer. Biomaterials, 2020, 232, 119751.	5.7	26
20	Injectable Liquid Crystal Formation System for Reshaping Tumor Immunosuppressive Microenvironment to Boost Antitumor Immunity: Postoperative Chemoimmunotherapy. Small, 2020, 16, e2004905.	5.2	16
21	Improving tumor hypoxia and radiotherapy resistance via in situ nitric oxide release strategy. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 150, 96-107.	2.0	17
22	Reshaping Tumor Immune Microenvironment through Acidity-Responsive Nanoparticles Featured with CRISPR/Cas9-Mediated Programmed Death-Ligand 1 Attenuation and Chemotherapeutics-Induced Immunogenic Cell Death. ACS Applied Materials & Interfaces, 2020, 12, 16018-16030.	4.0	84
23	Coâ€Delivery of Paclitaxel and Interleukinâ€12 Regulating Tumor Microenvironment for Cancer Immunochemotherapy. Advanced Healthcare Materials, 2020, 9, e1901858.	3.9	32
24	Intracellularly Generated Immunological Gold Nanoparticles for Combinatorial Photothermal Therapy and Immunotherapy against Tumor. Nano Letters, 2019, 19, 6635-6646.	4.5	159
25	Recent progress in drug delivery. Acta Pharmaceutica Sinica B, 2019, 9, 1145-1162.	5.7	529
26	Nanotechnology based CRISPR/Cas9 system delivery for genome editing: Progress and prospect. Nano Research, 2019, 12, 2437-2450.	5.8	46
27	Green tea extract-assembled nanoclusters for combinational photothermal and chemotherapy. Journal of Materials Chemistry B, 2019, 7, 5972-5982.	2.9	15
28	Transformable Nanoparticleâ€Enabled Synergistic Elicitation and Promotion of Immunogenic Cell Death for Tripleâ€Negative Breast Cancer Immunotherapy. Advanced Functional Materials, 2019, 29, 1905213.	7.8	65
29	A sequentially responsive and structure-transformable nanoparticle with a comprehensively improved â€~CAPIR cascade' for enhanced antitumor effect. Nanoscale, 2019, 11, 1177-1194.	2.8	19
30	Immunostimulatory cytokine and doxorubicin co-loaded nanovesicles for cancer immunochemotherapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 18, 66-77.	1.7	16
31	Extracellular vesicles based self-grown gold nanopopcorn for combinatorial chemo-photothermal therapy. Biomaterials, 2019, 197, 220-228.	5.7	80
32	Tumor Lysate‣oaded Lipid Hybrid Nanovaccine Collaborated with an Immune Checkpoint Antagonist for Combination Immunotherapy. Advanced Healthcare Materials, 2019, 8, e1800837.	3.9	20
33	Biomimetic Nanovesicles for Enhanced Antitumor Activity of Combinational Photothermal and Chemotherapy. Molecular Pharmaceutics, 2018, 15, 1341-1352.	2.3	32
34	Micelle System Based on Molecular Economy Principle for Overcoming Multidrug Resistance and Inhibiting Metastasis. Molecular Pharmaceutics, 2018, 15, 1005-1016.	2.3	18
35	pH-sensitive micelles with charge-reversible property for tumor growth inhibition and anti-metastasis. Journal of Materials Chemistry B, 2018, 6, 458-468.	2.9	9
36	Star-shaped polymer of β‑cyclodextrin-g-vitamin E TPGS for doxorubicin delivery and multidrug resistance inhibition. Colloids and Surfaces B: Biointerfaces, 2018, 169, 10-19.	2.5	20

#	Article	IF	CITATIONS
37	Immunochemotherapy mediated by thermosponge nanoparticles for synergistic anti-tumor effects. Journal of Controlled Release, 2018, 269, 322-336.	4.8	50
38	The application of nanotechnology in immune checkpoint blockade for cancer treatment. Journal of Controlled Release, 2018, 290, 28-45.	4.8	67
39	Nanoparticles Based on Poly (β-Amino Ester) and HPV16-Targeting CRISPR/shRNA as Potential Drugs for HPV16-Related Cervical Malignancy. Molecular Therapy, 2018, 26, 2443-2455.	3.7	43
40	Selective self-induced stimulus amplification prodrug platform for inhibiting multidrug resistance and lung metastasis. Journal of Controlled Release, 2018, 284, 224-239.	4.8	18
41	Recent Advances in the Application of Vitamin E TPGS for Drug Delivery. Theranostics, 2018, 8, 464-485.	4.6	283
42	Co-delivery of Doxorubicin and Interferon-Î ³ by Thermosensitive Nanoparticles for Cancer Immunochemotherapy. Molecular Pharmaceutics, 2018, 15, 4161-4172.	2.3	51
43	A facile doxorubicin-dichloroacetate conjugate nanomedicine with high drug loading for safe drug delivery. International Journal of Nanomedicine, 2018, Volume 13, 1281-1293.	3.3	24
44	Nanotechnology based therapeutic modality to boost anti-tumor immunity and collapse tumor defense. Journal of Controlled Release, 2017, 256, 26-45.	4.8	41
45	Enhanced tumor therapy via drug co-delivery and in situ vascular-promoting strategy. Journal of Controlled Release, 2017, 258, 108-120.	4.8	48
46	Redox/pH dual-sensitive hybrid micelles for targeting delivery and overcoming multidrug resistance of cancer. Journal of Materials Chemistry B, 2017, 5, 2964-2978.	2.9	34
47	Encapsulation of Hydrophilic and Hydrophobic Peptides into Hollow Mesoporous Silica Nanoparticles for Enhancement of Antitumor Immune Response. Small, 2017, 13, 1701741.	5.2	55
48	Tumor Microenvironment Responsive Nanogel for the Combinatorial Antitumor Effect of Chemotherapy and Immunotherapy. Nano Letters, 2017, 17, 6366-6375.	4.5	202
49	Bone Marrow Dendritic Cells Derived Microvesicles for Combinational Immunochemotherapy against Tumor. Advanced Functional Materials, 2017, 27, 1703191.	7.8	42
50	Biodegradable Hollow Mesoporous Silica Nanoparticles for Regulating Tumor Microenvironment and Enhancing Antitumor Efficiency. Theranostics, 2017, 7, 3276-3292.	4.6	146
51	A safe, simple and efficient doxorubicin prodrug hybrid micelle for overcoming tumor multidrug resistance and targeting delivery. Journal of Controlled Release, 2016, 235, 182-194.	4.8	129
52	RGD-decorated redox-responsive <scp>d</scp> -α-tocopherol polyethylene glycol succinate–poly(lactide) nanoparticles for targeted drug delivery. Journal of Materials Chemistry B, 2016, 4, 2338-2350.	2.9	24
53	Lipid-enveloped zinc phosphate hybrid nanoparticles for codelivery of H-2Kb and H-2Db-restricted antigenic peptides and monophosphoryl lipid A to induce antitumor immunity against melanoma. Journal of Controlled Release, 2016, 228, 26-37.	4.8	68
54	Radiosensitization of TPGS-emulsified docetaxel-loaded poly(lactic-co-glycolic acid) nanoparticles in CNE-1 and A549 cells. Journal of Biomaterials Applications, 2016, 30, 1127-1141.	1.2	7

#	Article	IF	CITATIONS
55	Novel redox-sensitive mixed micelle with enhanced antitumor activity. Journal of Controlled Release, 2015, 213, e148-e149.	4.8	1
56	D-α-tocopherol polyethylene glycol succinate-based derivative nanoparticles as a novel carrier for paclitaxel delivery. International Journal of Nanomedicine, 2015, 10, 5219.	3.3	21
57	Combination delivery of Adjudin and Doxorubicin via integrating drug conjugation and nanocarrier approaches for the treatment of drug-resistant cancer cells. Journal of Materials Chemistry B, 2015, 3, 1556-1564.	2.9	55
58	Erythrocyte Membrane-Enveloped Polymeric Nanoparticles as Nanovaccine for Induction of Antitumor Immunity against Melanoma. ACS Nano, 2015, 9, 6918-6933.	7.3	327
59	Immunogenicity and protective efficacy of DMT liposome-adjuvanted tuberculosis subunit CTT3H vaccine. Human Vaccines and Immunotherapeutics, 2015, 11, 1456-1464.	1.4	21
60	Cell or Cell Membrane-Based Drug Delivery Systems. Theranostics, 2015, 5, 863-881.	4.6	363
61	Hydrophobic interaction mediating self-assembled nanoparticles of succinobucol suppress lung metastasis of breast cancer by inhibition of VCAM-1 expression. Journal of Controlled Release, 2015, 205, 162-171.	4.8	84
62	Magnetic nanoparticle clusters radiosensitise human nasopharyngeal and lung cancer cells after alternating magnetic field treatment. International Journal of Hyperthermia, 2015, 31, 800-812.	1.1	9
63	TPGS-stabilized NaYbF4:Er upconversion nanoparticles for dual-modal fluorescent/CT imaging and anticancer drug delivery to overcome multi-drug resistance. Biomaterials, 2015, 40, 107-116.	5.7	172
64	Co-delivery of Doxorubicin and Bmi1 siRNA by Folate Receptor Targeted Liposomes Exhibits Enhanced Anti-Tumor Effects <i>in vitro</i> and <i>in vivo</i> . Theranostics, 2014, 4, 1096-1111.	4.6	94
65	Combinational delivery of lipid-enveloped polymeric nanoparticles carrying different peptides for anti-tumor immunotherapy. Nanomedicine, 2014, 9, 635-647.	1.7	46
66	Nitric Oxide Releasing <scp>d</scp> -α-Tocopheryl Polyethylene Glycol Succinate for Enhancing Antitumor Activity of Doxorubicin. Molecular Pharmaceutics, 2014, 11, 4118-4129.	2.3	86
67	Preventive effects of turmeric on the high-fat diet-induced hyperlipidaemia in mice associated with a targeted metabolomic approach for the analysis of serum lysophosphatidylcholine using LC-MS/MS. Journal of Functional Foods, 2014, 11, 130-141.	1.6	19
68	<scp>d</scp> -α-Tocopherol Polyethylene Glycol Succinate-Based Redox-Sensitive Paclitaxel Prodrug for Overcoming Multidrug Resistance in Cancer Cells. Molecular Pharmaceutics, 2014, 11, 3196-3209.	2.3	127
69	Chitosan- <i>g</i> -TPGS Nanoparticles for Anticancer Drug Delivery and Overcoming Multidrug Resistance. Molecular Pharmaceutics, 2014, 11, 59-70.	2.3	135
70	Vitamin E TPGS as a Molecular Biomaterial for Drug Delivery. , 2014, , 939-981.		0
71	Copolymer Technology for Advanced Nanomedicine. , 2014, , 339-346.		0
72	In vitro and in vivo Investigation on PLA–TPGS Nanoparticles for Controlled and Sustained Small Molecule Chemotherapy. , 2014, , 157-178.		0

#	Article	IF	CITATIONS
73	pH-Sensitive Docetaxel-Loaded <scp>d</scp> -α-Tocopheryl Polyethylene Glycol Succinate–Poly(β-amino) Tj 2636-2646.	ETQq1 1 2.6	0.784314 rgE 79
74	Synthesis of polymer–inorganic patchy microcapsules with tunable patches. European Polymer Journal, 2013, 49, 3691-3701.	2.6	6
75	Pharmaceutical nanotechnology for oral delivery of anticancer drugs. Advanced Drug Delivery Reviews, 2013, 65, 880-890.	6.6	308
76	Paclitaxel drug delivery systems. Expert Opinion on Drug Delivery, 2013, 10, 325-340.	2.4	141
77	Lipid-enveloped hybrid nanoparticles for drug delivery. Nanoscale, 2013, 5, 860.	2.8	109
78	The applications of Vitamin E TPGS in drug delivery. European Journal of Pharmaceutical Sciences, 2013, 49, 175-186.	1.9	444
79	Antitumor activity of docetaxel-loaded polymeric nanoparticles fabricated by Shirasu porous glass membrane-emulsification technique. International Journal of Nanomedicine, 2013, 8, 2641.	3.3	19
80	Nanoimmunotherapy: application of nanotechnology for sustained and targeted delivery of antigens to dendritic cells. Nanomedicine, 2012, 7, 1-4.	1.7	50
81	Vitamin E <scp>D</scp> -α-tocopheryl polyethylene glycol 1000 succinate-based nanomedicine. Nanomedicine, 2012, 7, 1645-1647.	1.7	51
82	Vitamin E TPGS as a molecular biomaterial for drug delivery. Biomaterials, 2012, 33, 4889-4906.	5.7	493
83	Induction of anti-tumor cytotoxic T cell responses through PLGA-nanoparticle mediated antigen delivery. Biomaterials, 2011, 32, 3666-3678.	5.7	208
84	Genomic profiling by machine learning. , 2011, , .		1
85	Copolymer technology for advanced nanomedicine. Nanomedicine, 2011, 6, 583-587.	1.7	13
86	In Vitro and In Vivo Investigation on PLA–TPGS Nanoparticles for Controlled and Sustained Small Molecule Chemotherapy. Pharmaceutical Research, 2008, 25, 1925-1935.	1.7	111
87	d-α-Tocopheryl polyethylene glycol 1000 succinate (TPGS) modified poly(l-lactide) (PLLA) films for localized delivery of paclitaxel. International Journal of Pharmaceutics, 2008, 350, 166-171.	2.6	27
88	Chemotherapeutic engineering: Vitamin E TPGS-emulsified nanoparticles of biodegradable polymers realized sustainable paclitaxel chemotherapy for 168h in vivo. Chemical Engineering Science, 2007, 62, 6641-6648.	1.9	87
89	Folate-decorated poly(lactide-co-glycolide)-vitamin E TPGS nanoparticles for targeted drug delivery. Biomaterials, 2007, 28, 1889-1899.	5.7	231
90	Nanoparticles of poly(lactide)—tocopheryl polyethylene glycol succinate (PLA-TPGS) copolymers for protein drug delivery. Biomaterials, 2007, 28, 2041-2050.	5.7	108

#	Article	IF	CITATIONS
91	In Vitro Investigation on Poly(lactide)â~'Tween 80 Copolymer Nanoparticles Fabricated by Dialysis Method for Chemotherapy. Biomacromolecules, 2006, 7, 1139-1146.	2.6	76
92	Nanoparticles of poly(lactide)/vitamin E TPGS copolymer for cancer chemotherapy: Synthesis, formulation, characterization and in vitro drug release. Biomaterials, 2006, 27, 262-270.	5.7	215
93	Self-assembled nanoparticles of poly(lactide)–Vitamin E TPGS copolymers for oral chemotherapy. International Journal of Pharmaceutics, 2006, 324, 191-198.	2.6	75
94	The drug encapsulation efficiency, in vitro drug release, cellular uptake and cytotoxicity of paclitaxel-loaded poly(lactide)–tocopheryl polyethylene glycol succinate nanoparticles. Biomaterials, 2006, 27, 4025-4033.	5.7	363