Junghyo Nah

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2382632/junghyo-nah-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

28 83 12,421 95 h-index g-index citations papers 13,639 5.84 95 7.4 L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
83	A Deionized Water Infilled Dual-Layer Insulator Applied Brain-implanted UWB Antenna for Wireless Biotelemetry Applications. <i>IEEE Transactions on Antennas and Propagation</i> , 2022 , 1-1	4.9	O
82	Enhanced Electrochemical Performance of Micro-Supercapacitors Via Laser-Scribed Cobalt/Reduced Graphene Oxide Hybrids. <i>ACS Applied Materials & Distributed Materials & Distri</i>	<u>8</u> 9·5	6
81	Polyvinylidene Fluoride Core-Shell Nanofiber Membranes with Highly Conductive Shells for Electromagnetic Interference Shielding. <i>ACS Applied Materials & District Materials</i> (2021), 13, 25428-25437	9.5	4
80	Enhanced Piezoelectric Output Performance of the SnS/SnS Heterostructure Thin-Film Piezoelectric Nanogenerator Realized by Atomic Layer Deposition. <i>ACS Nano</i> , 2021 , 15, 10428-10436	16.7	7
79	Morphology-dependent spin Seebeck effect in yttrium iron garnet thin films prepared by metal-organic decomposition. <i>Ceramics International</i> , 2021 , 47, 16770-16775	5.1	1
78	Fabrication of Biocompatible Polycaprolactone Hydroxyapatite Composite Filaments for the FDM 3D Printing of Bone Scaffolds. <i>Applied Sciences (Switzerland)</i> , 2021 , 11, 6351	2.6	8
77	. IEEE Internet of Things Journal, 2021 , 8, 7745-7767	10.7	11
76	Comparative advantages of a type-II superlattice barrier over an AlGaSb barrier for enhanced performance of InAs/GaSb LWIR nBn photodetectors. <i>Optics Letters</i> , 2021 , 46, 3877-3880	3	3
75	Design of the High-Speed PMSG with Two Different Shaft Material Considering Overhang Effect and Mechanical Characteristics. <i>Applied Sciences (Switzerland)</i> , 2021 , 11, 7670	2.6	1
74	Performance Enhancement of Flexible Polymer Triboelectric Generator through Polarization of the Embedded Ferroelectric Polymer Layer. <i>Applied Sciences (Switzerland)</i> , 2021 , 11, 1284	2.6	2
73	Surface leakage current reduction of InAsSb nBn MWIR HOT detector via hydrogen peroxide treatment. <i>Infrared Physics and Technology</i> , 2021 , 112, 103597	2.7	1
72	Polybenzimidazole-Benzophenone Composite Nanofiber Window Air Filter with Superb UV Resistance and High Chemical and Thermal Durability. <i>ACS Applied Materials & Description</i> (2008), 12, 23914-23922	9.5	5
71	Strain-induced the dark current characteristics in InAs/GaSb type-II superlattice for mid-wave detector. <i>Journal of Semiconductors</i> , 2020 , 41, 062302	2.3	2
70	Ultra-flexible nanofiber-based multifunctional motion sensor. <i>Nano Energy</i> , 2020 , 72, 104672	17.1	20
69	. IEEE Transactions on Applied Superconductivity, 2020 , 30, 1-5	1.8	4
68	Output power density enhancement of triboelectric nanogenerators via ferroelectric polymer composite interfacial layers. <i>Nano Energy</i> , 2020 , 67, 104300	17.1	16
67	In situ formation of graphene/metal oxide composites for high-energy microsupercapacitors. <i>NPG Asia Materials</i> , 2020 , 12,	10.3	14

(2018-2019)

66	Thermal conductivity measurement and analysis of Ge-Si x Ge1⊠ coreShell nanowires. <i>Applied Physics Express</i> , 2019 , 12, 045001	2.4	
65	Robust Wireless Sensor and Actuator Networks for Networked Control Systems. <i>Sensors</i> , 2019 , 19,	3.8	11
64	Remarkable Output Power Density Enhancement of Triboelectric Nanogenerators via Polarized Ferroelectric Polymers and Bulk MoS Composites. <i>ACS Nano</i> , 2019 , 13, 4640-4646	16.7	54
63	Electrically Activated Ultrathin PVDF-TrFE Air Filter for High-Efficiency PM1.0 Filtration. <i>Advanced Functional Materials</i> , 2019 , 29, 1903633	15.6	62
62	Thermal conductivity enhancement in electrospun poly(vinyl alcohol) and poly(vinyl alcohol)/cellulose nanocrystal composite nanofibers. <i>Scientific Reports</i> , 2019 , 9, 3026	4.9	28
61	Role of a buried indium zinc oxide layer in the performance enhancement of triboelectric nanogenerators. <i>Nano Energy</i> , 2019 , 55, 501-505	17.1	18
60	Light-Permeable Air Filter with Self-Polarized Nylon-11 Nanofibers for Enhanced Trapping of Particulate Matters. <i>Advanced Materials Interfaces</i> , 2019 , 6, 1801832	4.6	12
59	Reusable Polybenzimidazole Nanofiber Membrane Filter for Highly Breathable PM Dust Proof Mask. <i>ACS Applied Materials & Dust Proof Mask. ACS Applied Materials & Dust Proof Mask. Dust Proof Mask. ACS Applied Materials & Dust Proof Mask. Dust</i>	9.5	60
58	A soft lithographic approach to fabricate InAs nanowire field-effect transistors. <i>Scientific Reports</i> , 2018 , 8, 3204	4.9	5
57	Ferroelectric nanoparticle-embedded sponge structure triboelectric generators. <i>Nanotechnology</i> , 2018 , 29, 185402	3.4	8
56	Investigation of 3-D Printed, Electrically Small, and Thin Magnetic Dipole Antenna. <i>IEEE Antennas and Wireless Propagation Letters</i> , 2018 , 17, 654-657	3.8	8
55	Transmission Scheduling Schemes of Industrial Wireless Sensors for Heterogeneous Multiple Control Systems. <i>Sensors</i> , 2018 , 18,	3.8	3
54	An ultraviolet and electric field activated photopolymer-ferroelectric nanoparticle composite for the performance enhancement of triboelectric nanogenerators. <i>Nanoscale</i> , 2018 , 10, 20995-21000	7.7	4
53	Interface States in Bilayer Graphene Encapsulated by Hexagonal Boron Nitride. <i>ACS Applied Materials & ACS Applied Materials & ACS Applied</i>	9.5	
52	Most facile synthesis of Zn-Al:LDHs nanosheets at room temperature via environmentally friendly process and their high power generation by flexoelectricity. <i>Materials Today Energy</i> , 2018 , 10, 254-263	7	8
51	The influence of substrate-dependent triboelectric charging of graphene on the electric potential generation by the flow of electrolyte droplets. <i>Nano Energy</i> , 2018 , 54, 66-72	17.1	13
50	Dark current improvement due to dry-etch process in InAs/GaSb type-II superlattice LWIR photodetector with nBn structure. <i>Infrared Physics and Technology</i> , 2018 , 94, 161-164	2.7	7
49	Microneedles integrated with a triboelectric nanogenerator: an electrically active drug delivery system. <i>Nanoscale</i> , 2018 , 10, 13502-13510	7.7	25

48	Catalytic synergy effect of MoS2/reduced graphene oxide hybrids for a highly efficient hydrogen evolution reaction. <i>RSC Advances</i> , 2017 , 7, 5480-5487	3.7	47
47	Effects of Bheet crystals and a glycine-rich matrix on the thermal conductivity of spider dragline silk. <i>International Journal of Biological Macromolecules</i> , 2017 , 96, 384-391	7.9	3
46	Ferroelectric Zinc Oxide Nanowire Embedded Flexible Sensor for Motion and Temperature Sensing. <i>ACS Applied Materials & Distributed & Distributed & Distributed & Distributed </i>	9.5	41
45	Air-Stable Humidity Sensor Using Few-Layer Black Phosphorus. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 10019-10026	9.5	68
44	Formation of Triboelectric Series via Atomic-Level Surface Functionalization for Triboelectric Energy Harvesting. <i>ACS Nano</i> , 2017 , 11, 6131-6138	16.7	109
43	Induced dipole in vanadium-doped zinc oxide nanosheets and its effects on photoelectrochemical water splitting. <i>Nanotechnology</i> , 2017 , 28, 395403	3.4	10
42	High-Performance Piezoelectric Nanogenerators via Imprinted Sol-Gel BaTiO Nanopillar Array. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> , 9, 41099-41103	9.5	24
41	Li-doped Cu2O/ZnO heterojunction for flexible and semi-transparent piezoelectric nanogenerators. <i>Ceramics International</i> , 2017 , 43, 2279-2287	5.1	13
40	A vanadium-doped ZnO nanosheets-polymer composite for flexible piezoelectric nanogenerators. <i>Nanoscale</i> , 2016 , 8, 1314-21	7.7	42
39	Spontaneously polarized lithium-doped zinc oxide nanowires as photoanodes for electrical water splitting. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 3223-3227	13	12
38	Piezoelectric properties of CH3NH3PbI3 perovskite thin films and their applications in piezoelectric generators. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 756-763	13	95
37	Triboelectric Hydrogen Gas Sensor with Pd Functionalized Surface. <i>Nanomaterials</i> , 2016 , 6,	5.4	19
36	Triboelectric contact surface charge modulation and piezoelectric charge inducement using polarized composite thin film for performance enhancement of triboelectric generators. <i>Nano Energy</i> , 2016 , 25, 225-231	17.1	44
35	Scalable and enhanced triboelectric output power generation by surface functionalized nanoimprint patterns. <i>Nanotechnology</i> , 2016 , 27, 205401	3.4	18
34	Interfacial Mode Interactions of Surface Plasmon Polaritons on Gold Nanodome Films. <i>ACS Applied Materials & ACS Applied &</i>	9.5	6
33	Triboelectric charging sequence induced by surface functionalization as a method to fabricate high performance triboelectric generators. <i>ACS Nano</i> , 2015 , 9, 4621-7	16.7	160
32	Phosphorus-doped zinc oxide pl homojunction thin film for flexible piezoelectric nanogenerators. <i>Nano Energy</i> , 2015 , 18, 126-132	17.1	19
31	Thermal Conductivity Measurement of Ge-SixGe1-x Core-Shell Nanowires Using Suspended Microdevices. <i>Transactions of the Korean Society of Mechanical Engineers, B</i> , 2015 , 39, 825-829	0.5	2

(2010-2014)

30	Hemispherically aggregated BaTiO3 nanoparticle composite thin film for high-performance flexible piezoelectric nanogenerator. <i>ACS Nano</i> , 2014 , 8, 2766-73	16.7	220
29	Lithium-doped zinc oxide nanowires-polymer composite for high performance flexible piezoelectric nanogenerator. <i>ACS Nano</i> , 2014 , 8, 10844-50	16.7	106
28	Solvent-assisted optimal BaTiO3 nanoparticles-polymer composite cluster formation for high performance piezoelectric nanogenerators. <i>Nanotechnology</i> , 2014 , 25, 485401	3.4	22
27	Realization and Scaling of \${rm Ge}{hbox{}}{rm Si}_{1{hbox{-}}}{rm x}}{rm Ge}_{rm x}\$ Core-Shell Nanowire \$n\$-FETs. <i>IEEE Transactions on Electron Devices</i> , 2013 , 60, 4027-4033	2.9	3
26	Piezoelectric performance enhancement of ZnO flexible nanogenerator by a CuO᠒nO pl junction formation. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 8103	7.1	56
25	CMOS Logic Devices and Gas Sensors Realized by Epitaxially Transferred 2-D III-V Nanoribbons on Insulator. <i>ECS Transactions</i> , 2013 , 58, 95-101	1	
24	Realization of a Gas Sensor Using Ultrathin InAs Nanoribbon Membranes for NO2Detection at Parts-per-Billion Levels. <i>Bulletin of the Korean Chemical Society</i> , 2013 , 34, 1021-1022	1.2	
23	Nanoscale InGaSb heterostructure membranes on Si substrates for high hole mobility transistors. <i>Nano Letters</i> , 2012 , 12, 2060-6	11.5	74
22	Role of confinement on carrier transport in Ge-Si(x)Ge(1-x) core-shell nanowires. <i>Nano Letters</i> , 2012 , 12, 108-12	11.5	32
21	Self-aligned, extremely high frequency III-V metal-oxide-semiconductor field-effect transistors on rigid and flexible substrates. <i>Nano Letters</i> , 2012 , 12, 4140-5	11.5	67
20	p-Type InP Nanopillar Photocathodes for Efficient Solar-Driven Hydrogen Production. <i>Angewandte Chemie</i> , 2012 , 124, 10918-10922	3.6	34
19	p-Type InP nanopillar photocathodes for efficient solar-driven hydrogen production. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 10760-4	16.4	226
18	Extremely bendable, high-performance integrated circuits using semiconducting carbon nanotube networks for digital, analog, and radio-frequency applications. <i>Nano Letters</i> , 2012 , 12, 1527-33	11.5	258
17	III-V complementary metal-oxide-semiconductor electronics on silicon substrates. <i>Nano Letters</i> , 2012 , 12, 3592-5	11.5	74
16	Quantum Size Effects on the Chemical Sensing Performance of Two-Dimensional Semiconductors. Journal of Physical Chemistry C, 2012 , 116, 9750-9754	3.8	36
15	Benchmarking the performance of ultrathin body InAs-on-insulator transistors as a function of body thickness. <i>Applied Physics Letters</i> , 2011 , 99, 103507	3.4	37
14	Coulomb drag of massless fermions in graphene. <i>Physical Review B</i> , 2011 , 83,	3.3	145
13	Role of MetalBemiconductor Contact in Nanowire Field-Effect Transistors. <i>IEEE Nanotechnology Magazine</i> , 2010 , 9, 237-242	2.6	11

12	Lateral spin injection in germanium nanowires. <i>Nano Letters</i> , 2010 , 10, 3297-301	11.5	54
11	Hall mobility measurements in enhancement-mode GaAs field-effect transistors with Al2O3 gate dielectric. <i>Applied Physics Letters</i> , 2010 , 97, 213506	3.4	19
10	2010,		45
9	Ge-SixGe1-x core-shell nanowire tunneling field-effect transistors 2010 ,		1
8	Enhanced-Performance Germanium Nanowire Tunneling Field-Effect Transistors Using Flash-Assisted Rapid Thermal Process. <i>IEEE Electron Device Letters</i> , 2010 , 31, 1359-1361	4.4	19
7	Scaling Properties of \$hbox{Ge}\$ \$hbox{Si}_{x}hbox{Ge}_{1 - x}\$ CoreBhell Nanowire Field-Effect Transistors. <i>IEEE Transactions on Electron Devices</i> , 2010 , 57, 491-495	2.9	14
6	\$hbox{Ge-Si}_{x}hbox{Ge}_{1 - x}\$ CoreBhell Nanowire Tunneling Field-Effect Transistors. <i>IEEE Transactions on Electron Devices</i> , 2010 , 57, 1883-1888	2.9	24
5	Realization of dual-gated GeBixGe1II core-shell nanowire field effect transistors with highly doped source and drain. <i>Applied Physics Letters</i> , 2009 , 94, 063117	3.4	21
4	Opportunities for Group IV Nanowire Devices in Si CMOS Technology. <i>ECS Transactions</i> , 2009 , 16, 735-7	740	
3	Large-area synthesis of high-quality and uniform graphene films on copper foils. <i>Science</i> , 2009 , 324, 13	1 2 -43	8900
2	Realization of a high mobility dual-gated graphene field-effect transistor with Al2O3 dielectric. <i>Applied Physics Letters</i> , 2009 , 94, 062107	3.4	737
1	Doping of GeBixGe1⊠ core-shell nanowires using low energy ion implantation. <i>Applied Physics Letters</i> , 2008 , 93, 203108	3.4	17