
## Celeste M Nelson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2381977/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                       | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Cell Shape, Cytoskeletal Tension, and RhoA Regulate Stem Cell Lineage Commitment. Developmental<br>Cell, 2004, 6, 483-495.                                                                                    | 7.0  | 3,799     |
| 2  | Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature, 2005, 436, 123-127.                                                                                              | 27.8 | 1,159     |
| 3  | Of Extracellular Matrix, Scaffolds, and Signaling: Tissue Architecture Regulates Development,<br>Homeostasis, and Cancer. Annual Review of Cell and Developmental Biology, 2006, 22, 287-309.                 | 9.4  | 976       |
| 4  | Emergent patterns of growth controlled by multicellular form and mechanics. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 11594-11599.                          | 7.1  | 760       |
| 5  | Mechanical tugging force regulates the size of cell–cell junctions. Proceedings of the National<br>Academy of Sciences of the United States of America, 2010, 107, 9944-9949.                                 | 7.1  | 633       |
| 6  | Tissue Geometry Determines Sites of Mammary Branching Morphogenesis in Organotypic Cultures.<br>Science, 2006, 314, 298-300.                                                                                  | 12.6 | 545       |
| 7  | Modeling dynamic reciprocity: Engineering three-dimensional culture models of breast architecture, function, and neoplastic transformation. Seminars in Cancer Biology, 2005, 15, 342-352.                    | 9.6  | 305       |
| 8  | TGF-β1-induced EMT promotes targeted migration of breast cancer cells through the lymphatic system by the activation of CCR7/CCL21-mediated chemotaxis. Oncogene, 2016, 35, 748-760.                          | 5.9  | 246       |
| 9  | Cell-cell signaling by direct contact increases cell proliferation via a PI3K-dependent signal. FEBS<br>Letters, 2002, 514, 238-242.                                                                          | 2.8  | 229       |
| 10 | Simple Approach to Micropattern Cells on Common Culture Substrates by Tuning Substrate<br>Wettability. Tissue Engineering, 2004, 10, 865-872.                                                                 | 4.6  | 215       |
| 11 | Mechanotransduction: use the force(s). BMC Biology, 2015, 13, 47.                                                                                                                                             | 3.8  | 183       |
| 12 | Tissue geometry patterns epithelial–mesenchymal transition via intercellular mechanotransduction.<br>Journal of Cellular Biochemistry, 2010, 110, 44-51.                                                      | 2.6  | 178       |
| 13 | Mechanism of Akt1 inhibition of breast cancer cell invasion reveals a protumorigenic role for TSC2.<br>Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 4134-4139. | 7.1  | 173       |
| 14 | Human mammary progenitor cell fate decisions are products of interactions with combinatorial microenvironments. Integrative Biology (United Kingdom), 2009, 1, 70-79.                                         | 1.3  | 166       |
| 15 | Integrated morphodynamic signalling of the mammary gland. Nature Reviews Molecular Cell Biology,<br>2011, 12, 581-593.                                                                                        | 37.0 | 163       |
| 16 | Vascular Endothelial-Cadherin Regulates Cytoskeletal Tension, Cell Spreading, and Focal Adhesions by<br>Stimulating RhoA. Molecular Biology of the Cell, 2004, 15, 2943-2953.                                 | 2.1  | 162       |
| 17 | Laminin and biomimetic extracellular elasticity enhance functional differentiation in mammary epithelia. EMBO Journal, 2008, 27, 2829-2838.                                                                   | 7.8  | 161       |
| 18 | Fabrication of aligned microstructures with a single elastomeric stamp. Proceedings of the National<br>Academy of Sciences of the United States of America. 2002. 99. 1758-1762.                              | 7.1  | 152       |

| #  | Article                                                                                                                                                                                       | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Cell shape regulates global histone acetylation in human mammary epithelial cells. Experimental Cell<br>Research, 2007, 313, 3066-3075.                                                       | 2.6  | 150       |
| 20 | Cellular and physical mechanisms of branching morphogenesis. Development (Cambridge), 2014, 141, 2750-2759.                                                                                   | 2.5  | 149       |
| 21 | Localized Smooth Muscle Differentiation Is Essential for Epithelial Bifurcation during Branching<br>Morphogenesis of the Mammalian Lung. Developmental Cell, 2015, 34, 719-726.               | 7.0  | 145       |
| 22 | New Insights into the Regulation of Epithelial–Mesenchymal Transition and Tissue Fibrosis.<br>International Review of Cell and Molecular Biology, 2012, 294, 171-221.                         | 3.2  | 141       |
| 23 | Geometrically Controlled Endothelial Tubulogenesis in Micropatterned Gels. Tissue Engineering - Part<br>A, 2010, 16, 2255-2263.                                                               | 3.1  | 140       |
| 24 | Degradation of Micropatterned Surfaces by Cell-Dependent and -Independent Processesâ€. Langmuir,<br>2003, 19, 1493-1499.                                                                      | 3.5  | 135       |
| 25 | Endogenous patterns of mechanical stress are required for branching morphogenesis. Integrative<br>Biology (United Kingdom), 2010, 2, 424-434.                                                 | 1.3  | 131       |
| 26 | Change in cell shape is required for matrix metalloproteinaseâ€induced epithelialâ€mesenchymal<br>transition of mammary epithelial cells. Journal of Cellular Biochemistry, 2008, 105, 25-33. | 2.6  | 120       |
| 27 | Cadherins, RhoA, and Rac1 Are Differentially Required for Stretch-Mediated Proliferation in Endothelial Versus Smooth Muscle Cells. Circulation Research, 2007, 101, e44-52.                  | 4.5  | 117       |
| 28 | Mapping of Mechanical Strains and Stresses around Quiescent Engineered Three-Dimensional<br>Epithelial Tissues. Biophysical Journal, 2012, 103, 152-162.                                      | 0.5  | 117       |
| 29 | Tissue Stiffness and Hypoxia Modulate the Integrin-Linked Kinase ILK to Control Breast Cancer<br>Stem-like Cells. Cancer Research, 2016, 76, 5277-5287.                                       | 0.9  | 116       |
| 30 | On Buckling Morphogenesis. Journal of Biomechanical Engineering, 2016, 138, 021005.                                                                                                           | 1.3  | 116       |
| 31 | VE-cadherin simultaneously stimulates and inhibits cell proliferation by altering cytoskeletal structure and tension. Journal of Cell Science, 2003, 116, 3571-3581.                          | 2.0  | 115       |
| 32 | Three-dimensional lithographically defined organotypic tissue arrays for quantitative analysis of morphogenesis and neoplastic progression. Nature Protocols, 2008, 3, 674-678.               | 12.0 | 114       |
| 33 | Sustained activation of STAT5 is essential for chromatin remodeling and maintenance of mammary-specific function. Journal of Cell Biology, 2009, 184, 57-66.                                  | 5.2  | 112       |
| 34 | Sculpting Organs: Mechanical Regulation of Tissue Development. Annual Review of Biomedical<br>Engineering, 2012, 14, 129-154.                                                                 | 12.3 | 109       |
| 35 | Dynamic tensile forces drive collective cell migration through three-dimensional extracellular matrices. Scientific Reports, 2015, 5, 11458.                                                  | 3.3  | 107       |
| 36 | Apical constriction initiates new bud formation during monopodial branching of the embryonic chicken lung. Development (Cambridge), 2013, 140, 3146-3155.                                     | 2.5  | 105       |

| #  | Article                                                                                                                                                                                                                | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Microstructured extracellular matrices in tissue engineering and development. Current Opinion in<br>Biotechnology, 2006, 17, 518-523.                                                                                  | 6.6  | 104       |
| 38 | Mechanically patterning the embryonic airway epithelium. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9230-9235.                                                        | 7.1  | 98        |
| 39 | Matrix compliance regulates Rac1b localization, NADPH oxidase assembly, and epithelial–mesenchymal transition. Molecular Biology of the Cell, 2012, 23, 4097-4108.                                                     | 2.1  | 97        |
| 40 | E-cadherin engagement stimulates proliferation via Rac1. Journal of Cell Biology, 2006, 173, 431-441.                                                                                                                  | 5.2  | 95        |
| 41 | Quantitative Relationship among Integrin-Ligand Binding, Adhesion, and Signaling via Focal Adhesion<br>Kinase and Extracellular Signal-regulated Kinase 2. Journal of Biological Chemistry, 1999, 274,<br>27119-27127. | 3.4  | 92        |
| 42 | Transmembrane/cytoplasmic, rather than catalytic, domains of Mmp14 signal to MAPK activation and mammary branching morphogenesis via binding to integrin β1. Development (Cambridge), 2013, 140, 343-352.              | 2.5  | 91        |
| 43 | Extracellular matrix proteins regulate epithelial–mesenchymal transition in mammary epithelial cells.<br>Differentiation, 2013, 86, 126-132.                                                                           | 1.9  | 90        |
| 44 | Rap1 Integrates Tissue Polarity, Lumen Formation, and Tumorigenic Potential in Human Breast<br>Epithelial Cells. Cancer Research, 2007, 67, 4759-4766.                                                                 | 0.9  | 89        |
| 45 | Microfluidic chest cavities reveal that transmural pressure controls the rate of lung development.<br>Development (Cambridge), 2017, 144, 4328-4335.                                                                   | 2.5  | 88        |
| 46 | Self-organization of engineered epithelial tubules by differential cellular motility. Proceedings of the<br>National Academy of Sciences of the United States of America, 2009, 106, 14890-14895.                      | 7.1  | 85        |
| 47 | Human organoids: a new dimension in cell biology. Molecular Biology of the Cell, 2019, 30, 1129-1137.                                                                                                                  | 2.1  | 83        |
| 48 | Geometric control of tissue morphogenesis. Biochimica Et Biophysica Acta - Molecular Cell Research,<br>2009, 1793, 903-910.                                                                                            | 4.1  | 82        |
| 49 | Interstitial fluid pressure regulates collective invasion in engineered human breast<br>tumors <i>via</i> Snail, vimentin, and E-cadherin. Integrative Biology (United Kingdom), 2016, 8, 319-331.                     | 1.3  | 81        |
| 50 | Microextrusion printing cell-laden networks of type I collagen with patterned fiber alignment and geometry. Soft Matter, 2019, 15, 5728-5738.                                                                          | 2.7  | 81        |
| 51 | Regulation of Epithelial-Mesenchymal Transition by Transmission of Mechanical Stress through<br>Epithelial Tissues. Cancer Microenvironment, 2012, 5, 29-38.                                                           | 3.1  | 80        |
| 52 | Photoresponsive Coumarinâ€6tabilized Polymeric Nanoparticles as a Detectable Drug Carrier. Small,<br>2012, 8, 1693-1700.                                                                                               | 10.0 | 75        |
| 53 | Lymphatic function is required prenatally for lung inflation at birth. Journal of Experimental Medicine, 2014, 211, 815-826.                                                                                           | 8.5  | 69        |
| 54 | Bidirectional extracellular matrix signaling during tissue morphogenesis. Cytokine and Growth<br>Factor Reviews, 2009, 20, 459-465.                                                                                    | 7.2  | 66        |

| #  | Article                                                                                                                                                                              | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Extracellular matrix and cytoskeletal dynamics during branching morphogenesis. Organogenesis, 2012, 8, 56-64.                                                                        | 1.2  | 66        |
| 56 | Smooth muscle differentiation shapes domain branches during mouse lung development. Development<br>(Cambridge), 2019, 146, .                                                         | 2.5  | 66        |
| 57 | Host epithelial geometry regulates breast cancer cell invasiveness. Proceedings of the National<br>Academy of Sciences of the United States of America, 2012, 109, 19632-19637.      | 7.1  | 64        |
| 58 | Mechanics of Development. Developmental Cell, 2021, 56, 240-250.                                                                                                                     | 7.0  | 62        |
| 59 | Snail1, Snail2, and E47 promote mammary epithelial branching morphogenesis. EMBO Journal, 2011, 30, 2662-2674.                                                                       | 7.8  | 59        |
| 60 | Regulation of Epithelial-Mesenchymal Transition in Breast Cancer Cells by Cell Contact and Adhesion.<br>Cancer Informatics, 2015, 14s3, CIN.S18965.                                  | 1.9  | 58        |
| 61 | Branching morphogenesis. Development (Cambridge), 2020, 147, .                                                                                                                       | 2.5  | 58        |
| 62 | The mechanics of development: Models and methods for tissue morphogenesis. Birth Defects Research<br>Part C: Embryo Today Reviews, 2010, 90, 193-202.                                | 3.6  | 57        |
| 63 | Dynamics of Tissue-Induced Alignment of Fibrous Extracellular Matrix. Biophysical Journal, 2017, 113, 702-713.                                                                       | 0.5  | 57        |
| 64 | Engineering amount of cell–cell contact demonstrates biphasic proliferative regulation through<br>RhoA and the actin cytoskeleton. Experimental Cell Research, 2008, 314, 2846-2854. | 2.6  | 54        |
| 65 | Mesenchymal proteases and tissue fluidity remodel the extracellular matrix during airway epithelial branching in the embryonic avian lung. Development (Cambridge), 2019, 146, .     | 2.5  | 52        |
| 66 | Non-classical export of epimorphin and its adhesion to αv-integrin in regulation of epithelial morphogenesis. Journal of Cell Science, 2007, 120, 2032-2043.                         | 2.0  | 51        |
| 67 | Decoupling diffusional from dimensional control of signaling in 3D culture reveals a role for myosin in tubulogenesis. Journal of Cell Science, 2010, 123, 2877-2883.                | 2.0  | 45        |
| 68 | Marangoni flows drive the alignment of fibrillar cell-laden hydrogels. Science Advances, 2020, 6,<br>eaaz7748.                                                                       | 10.3 | 44        |
| 69 | Modulation of Invasive Phenotype by Interstitial Pressure-Driven Convection in Aggregates of Human<br>Breast Cancer Cells. PLoS ONE, 2012, 7, e45191.                                | 2.5  | 40        |
| 70 | The Bioelectric Code: Reprogramming Cancer and Aging From the Interface of Mechanical and Chemical Microenvironments. Frontiers in Cell and Developmental Biology, 2018, 6, 21.      | 3.7  | 37        |
| 71 | Matrix compliance and RhoA direct the differentiation of mammary progenitor cells. Biomechanics and Modeling in Mechanobiology, 2012, 11, 1241-1249.                                 | 2.8  | 34        |
| 72 | Smooth muscle: a stiff sculptor of epithelial shapes. Philosophical Transactions of the Royal Society<br>B: Biological Sciences, 2018, 373, 20170318.                                | 4.0  | 34        |

| #  | Article                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | PI3K regulates branch initiation and extension of cultured mammary epithelia via Akt and Rac1 respectively. Developmental Biology, 2013, 379, 235-245.                                                   | 2.0 | 32        |
| 74 | Substratum stiffness regulates Erk signaling dynamics through receptor-level control. Cell Reports, 2021, 37, 110181.                                                                                    | 6.4 | 32        |
| 75 | Pulling together: Tissue-generated forces that drive lumen morphogenesis. Seminars in Cell and Developmental Biology, 2016, 55, 139-147.                                                                 | 5.0 | 31        |
| 76 | Building branched tissue structures: from single cell guidance to coordinated construction.<br>Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20150527.              | 4.0 | 30        |
| 77 | Extracellular Matrix Stiffness Exists in a Feedback Loop that Drives Tumor Progression. Advances in Experimental Medicine and Biology, 2018, 1092, 57-67.                                                | 1.6 | 30        |
| 78 | Dynamic changes in epithelial cell packing during tissue morphogenesis. Current Biology, 2021, 31,<br>R1098-R1110.                                                                                       | 3.9 | 30        |
| 79 | Homology with Vesicle Fusion Mediator Syntaxin-1a Predicts Determinants of Epimorphin/Syntaxin-2<br>Function in Mammary Epithelial Morphogenesis. Journal of Biological Chemistry, 2009, 284, 6877-6884. | 3.4 | 29        |
| 80 | Matrix Pore Size Governs Escape of Human Breast Cancer Cells from a Microtumor to an Empty Cavity.<br>IScience, 2020, 23, 101673.                                                                        | 4.1 | 29        |
| 81 | Epithelial tissue geometry directs emergence of bioelectric field and pattern of proliferation.<br>Molecular Biology of the Cell, 2020, 31, 1691-1702.                                                   | 2.1 | 29        |
| 82 | Tissue mechanics regulates form, function, and dysfunction. Current Opinion in Cell Biology, 2018, 54, 98-105.                                                                                           | 5.4 | 28        |
| 83 | Pushing, pulling, and squeezing our way to understanding mechanotransduction. Methods, 2016, 94,<br>4-12.                                                                                                | 3.8 | 27        |
| 84 | Mammary branch initiation and extension are inhibited by separate pathways downstream of TGFβ in culture. Experimental Cell Research, 2011, 317, 1872-1884.                                              | 2.6 | 26        |
| 85 | Inhibitory morphogens and monopodial branching of the embryonic chicken lung. Developmental Dynamics, 2012, 241, 852-862.                                                                                | 1.8 | 26        |
| 86 | A Soft Microenvironment Protects from Failure of Midbody Abscission and Multinucleation<br>Downstream of the EMT-Promoting Transcription Factor Snail. Cancer Research, 2018, 78, 2277-2289.             | 0.9 | 26        |
| 87 | Lattice-Based Model of Ductal Carcinoma In Situ Suggests Rules for Breast Cancer Progression to an<br>Invasive State. PLoS Computational Biology, 2014, 10, e1003997.                                    | 3.2 | 25        |
| 88 | Local accumulation of extracellular matrix regulates global morphogenetic patterning in the developing mammary gland. Current Biology, 2021, 31, 1903-1917.e6.                                           | 3.9 | 25        |
| 89 | Computational models of airway branching morphogenesis. Seminars in Cell and Developmental<br>Biology, 2017, 67, 170-176.                                                                                | 5.0 | 24        |
| 90 | Manipulation of Cell-Cell Adhesion Using Bowtie-Shaped Microwells. Methods in Molecular Biology,<br>2007, 370, 1-9.                                                                                      | 0.9 | 24        |

| #   | Article                                                                                                                                                                                        | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Adipose Stroma Induces Branching Morphogenesis of Engineered Epithelial Tubules. Tissue<br>Engineering - Part A, 2010, 16, 3719-3726.                                                          | 3.1  | 22        |
| 92  | Microfabricated tissues for investigating traction forces involved in cell migration and tissue morphogenesis. Cellular and Molecular Life Sciences, 2017, 74, 1819-1834.                      | 5.4  | 22        |
| 93  | Biomechanical Approaches for Studying Integration of Tissue Structure and Function in Mammary<br>Epithelia. Journal of Mammary Gland Biology and Neoplasia, 2004, 9, 361-374.                  | 2.7  | 21        |
| 94  | Regulation of tissue morphodynamics: an important role for actomyosin contractility. Current<br>Opinion in Genetics and Development, 2015, 32, 80-85.                                          | 3.3  | 21        |
| 95  | 3D culture models for studying branching morphogenesis in the mammary gland and mammalian lung.<br>Biomaterials, 2019, 198, 135-145.                                                           | 11.4 | 20        |
| 96  | Soft Microenvironments Induce Chemoresistance by Increasing Autophagy Downstream of<br>Integrin-Linked Kinase. Cancer Research, 2020, 80, 4103-4113.                                           | 0.9  | 20        |
| 97  | Integrin-linked kinase tunes cell–cell and cell-matrix adhesions to regulate the switch between apoptosis and EMT downstream of TGFβ1. Molecular Biology of the Cell, 2021, 32, 402-412.       | 2.1  | 20        |
| 98  | The Ecology of Tumors: By perturbing the microenvironment, wounds and infection may be key to tumor development. Scientist, 2006, 20, 30.                                                      | 2.0  | 20        |
| 99  | Toward the Directed Self-Assembly of Engineered Tissues. Annual Review of Chemical and<br>Biomolecular Engineering, 2014, 5, 507-526.                                                          | 6.8  | 19        |
| 100 | Substratum stiffness tunes proliferation downstream of Wnt3a in part by regulating integrin-linked kinase and frizzled-1. Journal of Cell Science, 2018, 131, .                                | 2.0  | 19        |
| 101 | Branch formation during organ development. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2010, 2, 734-741.                                                                    | 6.6  | 18        |
| 102 | Microstructured Extracellular Matrices in Tissue Engineering and Development: An Update. Annals of<br>Biomedical Engineering, 2014, 42, 1413-1423.                                             | 2.5  | 18        |
| 103 | Substratum stiffness signals through integrin-linked kinase and β1-integrin to regulate midbody proteins and abscission during EMT. Molecular Biology of the Cell, 2021, 32, 1664-1676.        | 2.1  | 18        |
| 104 | PI3K signaling in the regulation of branching morphogenesis. BioSystems, 2012, 109, 403-411.                                                                                                   | 2.0  | 17        |
| 105 | Fusion of airways during avian lung development constitutes a novel mechanism for the formation of continuous lumena in multicellular epithelia. Developmental Dynamics, 2020, 249, 1318-1333. | 1.8  | 17        |
| 106 | Quantitative approaches to uncover physical mechanisms of tissue morphogenesis. Current Opinion in<br>Biotechnology, 2013, 24, 954-961.                                                        | 6.6  | 15        |
| 107 | Morphogenesis and morphometric scaling of lung airway development follows phylogeny in chicken, quail, and duck embryos. EvoDevo, 2016, 7, 12.                                                 | 3.2  | 14        |
| 108 | Let's push things forward: disruptive technologies and the mechanics of tissue assembly. Integrative<br>Biology (United Kingdom), 2013, 5, 1162.                                               | 1.3  | 13        |

| #   | Article                                                                                                                                                                                 | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Adipose and mammary epithelial tissue engineering. Biomatter, 2013, 3, .                                                                                                                | 2.6  | 13        |
| 110 | Cell Division Induces and Switches Coherent Angular Motion within Bounded Cellular Collectives.<br>Biophysical Journal, 2017, 112, 2419-2427.                                           | 0.5  | 13        |
| 111 | Interstitial Hypertension Suppresses Escape of Human Breast Tumor Cells Via Convection of<br>Interstitial Fluid. Cellular and Molecular Bioengineering, 2021, 14, 147-159.              | 2.1  | 13        |
| 112 | Regulation of mechanical stress by mammary epithelial tissue structure controls breast cancer cell invasion. Oncotarget, 2013, 4, 498-499.                                              | 1.8  | 13        |
| 113 | Patterning the embryonic pulmonary mesenchyme. IScience, 2022, 25, 103838.                                                                                                              | 4.1  | 13        |
| 114 | Three-Dimensional Traction Force Microscopy of Engineered Epithelial Tissues. Methods in Molecular<br>Biology, 2015, 1189, 191-206.                                                     | 0.9  | 11        |
| 115 | Lithographically Defined Two- and Three-Dimensional Tissue Microarrays. Methods in Molecular<br>Biology, 2011, 671, 107-116.                                                            | 0.9  | 11        |
| 116 | Stress ball morphogenesis: How the lizard builds its lung. Science Advances, 2021, 7, eabk0161.                                                                                         | 10.3 | 11        |
| 117 | Generating tissue topology through remodeling of cell-cell adhesions. Experimental Cell Research, 2017, 358, 45-51.                                                                     | 2.6  | 10        |
| 118 | A 3D Culture Model to Study How Fluid Pressure and Flow Affect the Behavior of Aggregates of<br>Epithelial Cells. Methods in Molecular Biology, 2017, 1501, 245-257.                    | 0.9  | 10        |
| 119 | Modeling branching morphogenesis using materials with programmable mechanical instabilities.<br>Current Opinion in Biomedical Engineering, 2018, 6, 66-73.                              | 3.4  | 10        |
| 120 | Transmural pressure signals through retinoic acid to regulate lung branching. Development<br>(Cambridge), 2022, 149, .                                                                  | 2.5  | 10        |
| 121 | Dynamics of branched tissue assembly. Stem Cell Research and Therapy, 2012, 3, 42.                                                                                                      | 5.5  | 9         |
| 122 | Epithelial Packing: Even the Best of Friends Must Part. Current Biology, 2018, 28, R1197-R1200.                                                                                         | 3.9  | 9         |
| 123 | From static to animated: Measuring mechanical forces in tissues. Journal of Cell Biology, 2017, 216, 29-30.                                                                             | 5.2  | 8         |
| 124 | Matrix degradation and cell proliferation are coupled to promote invasion and escape from an engineered human breast microtumor. Integrative Biology (United Kingdom), 2021, 13, 17-29. | 1.3  | 8         |
| 125 | Mechanotransduction, Metastasis and Genomic Instability. Cancer Metastasis - Biology and Treatment, 2015, , 139-158.                                                                    | 0.1  | 8         |
| 126 | Mechanical Control of Cell Differentiation: Insights from the Early Embryo. Annual Review of<br>Biomedical Engineering, 2022, 24, 307-322.                                              | 12.3 | 8         |

| #   | Article                                                                                                                                                                                                                      | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Engineered Tissues to Quantify Collective Cell Migration During Morphogenesis. Methods in<br>Molecular Biology, 2012, 886, 173-182.                                                                                          | 0.9  | 7         |
| 128 | Negative Transpulmonary Pressure Disrupts Airway Morphogenesis by Suppressing Fgf10. Frontiers in<br>Cell and Developmental Biology, 2021, 9, 725785.                                                                        | 3.7  | 7         |
| 129 | Forces in Epithelial Origami. Developmental Cell, 2013, 26, 554-556.                                                                                                                                                         | 7.0  | 6         |
| 130 | Engineering Three-dimensional Epithelial Tissues Embedded within Extracellular Matrix. Journal of<br>Visualized Experiments, 2016, , .                                                                                       | 0.3  | 6         |
| 131 | Uncovering cellular networks in branching morphogenesis using single-cell transcriptomics.<br>Current Topics in Developmental Biology, 2021, 143, 239-280.                                                                   | 2.2  | 6         |
| 132 | Substratum stiffness tunes membrane voltage in mammary epithelial cells. Journal of Cell Science, 2021, 134, .                                                                                                               | 2.0  | 6         |
| 133 | Proteins, cells, and tissues in patterned environments. Soft Matter, 2014, 10, 2337.                                                                                                                                         | 2.7  | 5         |
| 134 | Myoepithelial crowd control of cancer cells. Journal of Cell Biology, 2018, 217, 3319-3321.                                                                                                                                  | 5.2  | 5         |
| 135 | Engineered extracellular matrices: Emerging strategies for decoupling structural and molecular<br>signals that regulate epithelial branching morphogenesis. Current Opinion in Biomedical Engineering,<br>2020, 13, 103-112. | 3.4  | 5         |
| 136 | The mechanics of crypt morphogenesis. Nature Cell Biology, 2021, 23, 678-679.                                                                                                                                                | 10.3 | 5         |
| 137 | Mechanics of development. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170316.                                                                                                       | 4.0  | 4         |
| 138 | Adipose Stroma Accelerates the Invasion and Escape of Human Breast Cancer Cells from an Engineered<br>Microtumor. Cellular and Molecular Bioengineering, 2022, 15, 15-29.                                                    | 2.1  | 4         |
| 139 | Symmetry breaking during morphogenesis in the embryo and in engineered tissues. AICHE Journal, 2012, 58, 3608-3613.                                                                                                          | 3.6  | 3         |
| 140 | Intercellular Communication, the Tumor Microenvironment, and Tumor Progression. , 2015, , 343-362.                                                                                                                           |      | 3         |
| 141 | Revealing epithelial morphogenetic mechanisms through live imaging. Current Opinion in Genetics and Development, 2022, 72, 61-68.                                                                                            | 3.3  | 3         |
| 142 | Tissue Geometry Regulates Collective Cell Motility. Biophysical Journal, 2012, 102, 705a.                                                                                                                                    | 0.5  | 1         |
| 143 | Bioengineering and mechanobiology: pushing (and pulling) the limits of cellular mechanics.<br>Molecular Biology of the Cell, 2012, 23, 969-969.                                                                              | 2.1  | 0         |
| 144 | Nanomedicine. , 2012, , 1644-1644.                                                                                                                                                                                           |      | 0         |

| #   | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Nanostructures for Coloration (Organisms other than Animals). , 2012, , 1790-1803.                                                                                                                      |     | 0         |
| 146 | Nano-FET. , 2012, , 1543-1543.                                                                                                                                                                          |     | 0         |
| 147 | Self-Propelled Particle Motion of Cells in Tissues. Biophysical Journal, 2013, 104, 213a.                                                                                                               | 0.5 | 0         |
| 148 | Determining the Role of Matrix Compliance in the Differentiation of Mammary Stem Cells. Methods in<br>Molecular Biology, 2013, 1202, 79-94.                                                             | 0.9 | 0         |
| 149 | Oxygen tension and Rac1b localization. , 2014, , .                                                                                                                                                      |     | 0         |
| 150 | Choreographing tissue morphogenesis. Seminars in Cell and Developmental Biology, 2016, 55, 79.                                                                                                          | 5.0 | 0         |
| 151 | Editorial overview: Cell architecture: Physical connections that drive organization and signaling.<br>Current Opinion in Cell Biology, 2018, 50, iv-v.                                                  | 5.4 | 0         |
| 152 | Living under Strain: How Epithelia Protect Their Genomes from Repeated Stretching. Biochemistry, 2020, 59, 2761-2763.                                                                                   | 2.5 | 0         |
| 153 | Decoupling diffusional from dimensional control of signaling in 3D culture reveals a role for myosin in tubulogenesis. Development (Cambridge), 2010, 137, e1-e1.                                       | 2.5 | 0         |
| 154 | Transmembrane/cytoplasmic, rather than catalytic, domains of Mmp14 signal to MAPK activation and mammary branching morphogenesis via binding to integrin β1. Journal of Cell Science, 2013, 126, e1-e1. | 2.0 | 0         |
| 155 | Nanopatterned Surfaces for Exploring and Regulating Cell Behavior. , 2016, , 2598-2606.                                                                                                                 |     | 0         |
| 156 | The Role of Cell Contractility in Epithelial Morphogenesis. FASEB Journal, 2016, 30, 232.3.                                                                                                             | 0.5 | 0         |
| 157 | Abstract 4526: Tumor invasion and escape from an engineered solid-like aggregate of human breast cancer cells into a cavity. , 2019, , .                                                                |     | 0         |
| 158 | How the lung folds itself: biophysical insights from evolution. FASEB Journal, 2022, 36, .                                                                                                              | 0.5 | 0         |