Alfredo Cruz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2381843/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The role of nutrient availability in regulating root architecture. Current Opinion in Plant Biology, 2003, 6, 280-287.	7.1	1,219
2	Phosphate Availability Alters Lateral Root Development in <i>Arabidopsis</i> by Modulating Auxin Sensitivity via a Mechanism Involving the TIR1 Auxin Receptor. Plant Cell, 2009, 20, 3258-3272.	6.6	471
3	The axolotl genome and the evolution of key tissue formation regulators. Nature, 2018, 554, 50-55.	27.8	463
4	Phosphate Starvation Induces a Determinate Developmental Program in the Roots of Arabidopsis thaliana. Plant and Cell Physiology, 2005, 46, 174-184.	3.1	329
5	A Bistable Circuit Involving SCARECROW-RETINOBLASTOMA Integrates Cues to Inform Asymmetric Stem Cell Division. Cell, 2012, 150, 1002-1015.	28.9	273
6	Phospholipase DZ2 plays an important role in extraplastidic galactolipid biosynthesis and phosphate recycling in Arabidopsis roots. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 6765-6770.	7.1	246
7	Methylome analysis reveals an important role for epigenetic changes in the regulation of the <i>Arabidopsis</i> response to phosphate starvation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E7293-302.	7.1	170
8	Functional and Transcriptome Analysis Reveals an Acclimatization Strategy for Abiotic Stress Tolerance Mediated by Arabidopsis NF-YA Family Members. PLoS ONE, 2012, 7, e48138.	2.5	162
9	A SCARECROW-RETINOBLASTOMA Protein Network Controls Protective Quiescence in the Arabidopsis Root Stem Cell Organizer. PLoS Biology, 2013, 11, e1001724.	5.6	137
10	Arabidopsis BIRD Zinc Finger Proteins Jointly Stabilize Tissue Boundaries by Confining the Cell Fate Regulator SHORT-ROOT and Contributing to Fate Specification. Plant Cell, 2015, 27, 1185-1199.	6.6	121
11	The xipotl Mutant of Arabidopsis Reveals a Critical Role for Phospholipid Metabolism in Root System Development and Epidermal Cell Integrity. Plant Cell, 2004, 16, 2020-2034.	6.6	117
12	Phosphate Starvation-Dependent Iron Mobilization Induces CLE14 Expression to Trigger Root Meristem Differentiation through CLV2/PEPR2 Signaling. Developmental Cell, 2017, 41, 555-570.e3.	7.0	107
13	The genome of <i>Bacillus coahuilensis</i> reveals adaptations essential for survival in the relic of an ancient marine environment. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5803-5808.	7.1	94
14	Irreversible fate commitment in the Arabidopsis stomatal lineage requires a FAMA and RETINOBLASTOMA-RELATED module. ELife, 2014, 3, .	6.0	86
15	Translational regulation of Arabidopsis XIPOTL1 is modulated by phosphocholine levels via the phylogenetically conserved upstream open reading frame 30. Journal of Experimental Botany, 2012, 63, 5203-5221.	4.8	58
16	RETINOBLASTOMA-RELATED Protein Stimulates Cell Differentiation in the <i>Arabidopsis</i> Root Meristem by Interacting with Cytokinin Signaling. Plant Cell, 2013, 25, 4469-4478.	6.6	46
17	Functional analysis of the Arabidopsis PLDZ2 promoter reveals an evolutionarily conserved low-Pi-responsive transcriptional enhancer element. Journal of Experimental Botany, 2012, 63, 2189-2202.	4.8	36
18	XYLEM NAC DOMAIN1, an angiosperm NAC transcription factor, inhibits xylem differentiation through conserved motifs that interact with RETINOBLASTOMAâ€RELATED. New Phytologist, 2017, 216, 76-89.	7.3	33

Alfredo Cruz

#	Article	IF	CITATIONS
19	Transcriptional landscapes of Axolotl (Ambystoma mexicanum). Developmental Biology, 2018, 433, 227-239.	2.0	31
20	Vision, challenges and opportunities for a Plant Cell Atlas. ELife, 2021, 10, .	6.0	31
21	Computational Modeling of Auxin: A Foundation for Plant Engineering. Frontiers in Plant Science, 2016, 7, 1881.	3.6	24
22	Emergent Protective Organogenesis in Date Palms: A Morpho-Devo-Dynamic Adaptive Strategy during Early Development. Plant Cell, 2019, 31, 1751-1766.	6.6	24
23	CONSTITUTIVE TRIPLE RESPONSE1 and PIN2 act in a coordinate manner to support the indeterminate root growth and meristem cell proliferating activity in Arabidopsis seedlings. Plant Science, 2019, 280, 175-186.	3.6	23
24	Deep microbial community profiling along the fermentation process of pulque, a biocultural resource of Mexico. Microbiological Research, 2020, 241, 126593.	5.3	23
25	A Phylogenetic Study of the ANT Family Points to a preANT Gene as the Ancestor of Basal and euANT Transcription Factors in Land Plants. Frontiers in Plant Science, 2019, 10, 17.	3.6	21
26	Transcriptional profiling of the CAM plant Agave salmiana reveals conservation of a genetic program for regeneration. Developmental Biology, 2018, 442, 28-39.	2.0	17
27	Transcriptional and Morpho-Physiological Responses of Marchantia polymorpha upon Phosphate Starvation. International Journal of Molecular Sciences, 2020, 21, 8354.	4.1	17
28	Pickle Recruits Retinoblastoma Related 1 to Control Lateral Root Formation in Arabidopsis. International Journal of Molecular Sciences, 2021, 22, 3862.	4.1	12
29	A phosphate starvationâ€driven bidirectional promoter as a potential tool for crop improvement and <i>inÂvitro</i> plant biotechnology. Plant Biotechnology Journal, 2017, 15, 558-567.	8.3	10
30	The Role of microRNAs in Animal Cell Reprogramming. Stem Cells and Development, 2016, 25, 1035-1049.	2.1	8
31	Functional Characterization of the Lin28/let-7 Circuit During Forelimb Regeneration in Ambystoma mexicanum and Its Influence on Metabolic Reprogramming. Frontiers in Cell and Developmental Biology, 2020, 8, 562940.	3.7	8
32	Multi-organ transcriptomic landscape of Ambystoma velasci metamorphosis. Developmental Biology, 2020, 466, 22-35.	2.0	6
33	Conservation analysis of core cell cycle regulators and their transcriptional behavior during limb regeneration in Ambystoma mexicanum. Mechanisms of Development, 2020, 164, 103651.	1.7	6
34	Development and Cell Cycle Activity of the Root Apical Meristem in the Fern Ceratopteris richardii. Genes, 2020, 11, 1455.	2.4	6
35	DNA repair during regeneration in <i>Ambystoma mexicanum</i> . Developmental Dynamics, 2021, 250, 788-799.	1.8	6
36	Arabidopsis thaliana PrimPol is a primase and lesion bypass DNA polymerase with the biochemical characteristics to cope with DNA damage in the nucleus, mitochondria, and chloroplast. Scientific Reports, 2021, 11, 20582.	3.3	4

Alfredo Cruz

#	Article	IF	CITATIONS
37	Evidence of requirement for homologousâ€mediated <scp>DNA</scp> repair during <i>Ambystoma mexicanum</i> limb regeneration. Developmental Dynamics, 2022, 251, 1035-1053.	1.8	4
38	Effect of Nutrient Availability on Root System Development. , 0, , 288-324.		3
39	MOLECULAR ANALYSIS OF MARIGOLD (TAGETES ERECTA) APETALA2 IN FLOWER DEVELOPMENT. Acta Horticulturae, 2012, , 293-298.	0.2	3
40	MicroRNAs Sequencing for Understanding the Genetic Regulation of Plant Genomes. , 2016, , .		3
41	Plants as Bioreactors for Human Health Nutrients. , 2014, , 423-454.		1
42	Phosphate Starvation Triggers Transcriptional Changes in the Biosynthesis and Signaling Pathways of Phytohormones in Marchantia polymorphaÂ. Biology and Life Sciences Forum, 2021, 4, 89.	0.6	1
43	miRNAs analysis during prickly pear development. Acta Horticulturae, 2016, , 99-104.	0.2	0
44	Reprogramación celular de embriones de Anthurium andraeanum por fitohormonas para micropropagación masiva. Nova Scientia, 2015, 7, 49.	0.1	0
45	A New Massive (omics) Analysis for Fruit Development and Other Important Traits in Prickly Pear (Opuntia spp). , 0, , .		0