Julie E Gray

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2381356/publications.pdf

Version: 2024-02-01

110	10,073	51	96
papers	citations	h-index	g-index
118	118	118	8432
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Induced Genetic Variations in Stomatal Density and Size of Rice Strongly Affects Water Use Efficiency and Responses to Drought Stresses. Frontiers in Plant Science, 2022, 13, .	1.7	17
2	Small EPIDERMAL PATTERNING FACTOR-LIKE2 peptides regulate awn development in rice. Plant Physiology, 2022, 190, 516-531.	2.3	10
3	Dynamic thermal imaging confirms local but not fast systemic <scp>ABA</scp> responses. Plant, Cell and Environment, 2021, 44, 885-899.	2.8	6
4	Stomatal responses to carbon dioxide and light require abscisic acid catabolism in <i>Arabidopsis</i> Interface Focus, 2021, 11, 20200036.	1.5	12
5	Leaf temperature responses to ABA and dead bacteria in wheat and Arabidopsis. Plant Signaling and Behavior, 2021, 16, 1899471.	1.2	1
6	Rice Stomatal Mega-Papillae Restrict Water Loss and Pathogen Entry. Frontiers in Plant Science, 2021, 12, 677839.	1.7	11
7	The influence of stomatal morphology and distribution on photosynthetic gas exchange. Plant Journal, 2020, 101, 768-779.	2.8	137
8	<i>Cr</i> <scp>RLK</scp> 1L receptorâ€like kinases <scp>HERK</scp> 1 and <scp>ANJEA</scp> are female determinants of pollen tube reception. EMBO Reports, 2020, 21, e48466.	2.0	62
9	How the stomate got his pore: very long chain fatty acids and a structural cell wall protein sculpt the guard cell outer cuticular ledge. New Phytologist, 2020, 228, 1698-1700.	3.5	8
10	Stomata and Sporophytes of the Model Moss Physcomitrium patens. Frontiers in Plant Science, 2020, 11, 643.	1.7	13
11	Rice with reduced stomatal density conserves water and has improved drought tolerance under future climate conditions. New Phytologist, 2019, 221, 371-384.	3.5	330
12	Distinct branches of the Nâ€end rule pathway modulate the plant immune response. New Phytologist, 2019, 221, 988-1000.	3.5	59
13	Mesophyll porosity is modulated by the presence of functional stomata. Nature Communications, 2019, 10, 2825.	5.8	63
14	Reduced stomatal density in bread wheat leads to increased water-use efficiency. Journal of Experimental Botany, 2019, 70, 4737-4748.	2.4	144
15	Rice plants overexpressing OsEPF1 show reduced stomatal density and increased root cortical aerenchyma formation. Scientific Reports, 2019, 9, 5584.	1.6	63
16	Bacterial infection systemically suppresses stomatal density. Plant, Cell and Environment, 2019, 42, 2411-2421.	2.8	37
17	Impact of Stomatal Density and Morphology on Water-Use Efficiency in a Changing World. Frontiers in Plant Science, 2019, 10, 225.	1.7	353
18	Pores for Thought: Can Genetic Manipulation of Stomatal Density Protect Future Rice Yields?. Frontiers in Plant Science, 2019, 10, 1783.	1.7	49

#	Article	IF	CITATIONS
19	Molecular control of stomatal development. Biochemical Journal, 2018, 475, 441-454.	1.7	106
20	The <scp>BIG</scp> protein distinguishes the process of <scp>CO</scp> ₂ â€induced stomatal closure from the inhibition of stomatal opening by <scp>CO</scp> ₂ . New Phytologist, 2018, 218, 232-241.	3.5	43
21	Stomatal development: focusing on the grasses. Current Opinion in Plant Biology, 2018, 41, 1-7.	3.5	89
22	Models and Mechanisms of Stomatal Mechanics. Trends in Plant Science, 2018, 23, 822-832.	4.3	53
23	Formation of the Stomatal Outer Cuticular Ledge Requires a Guard Cell Wall Proline-Rich Protein. Plant Physiology, 2017, 174, 689-699.	2.3	49
24	Origins and Evolution of Stomatal Development. Plant Physiology, 2017, 174, 624-638.	2.3	154
25	Reducing Stomatal Density in Barley Improves Drought Tolerance without Impacting on Yield. Plant Physiology, 2017, 174, 776-787.	2.3	267
26	CRISPR-Cas9 and CRISPR-Cpf1 mediated targeting of a stomatal developmental gene EPFL9 in rice. Plant Cell Reports, 2017, 36, 745-757.	2.8	170
27	Rice <scp>SUMO</scp> protease <i>Overly Tolerant to Salt 1</i> targets the transcription factor, Osb <scp>ZIP</scp> 23 to promote drought tolerance in rice. Plant Journal, 2017, 92, 1031-1043.	2.8	59
28	The Cys-Arg/N-End Rule Pathway Is a General Sensor of Abiotic Stress in Flowering Plants. Current Biology, 2017, 27, 3183-3190.e4.	1.8	118
29	Stomatal Opening Involves Polar, Not Radial, Stiffening Of Guard Cells. Current Biology, 2017, 27, 2974-2983.e2.	1.8	89
30	Conserved Roles of CrRLK1L Receptor-Like Kinases in Cell Expansion and Reproduction from Algae to Angiosperms. Frontiers in Plant Science, 2016, 07, 1269.	1.7	54
31	Stomatal Function Requires Pectin De-methyl-esterification of the Guard Cell Wall. Current Biology, 2016, 26, 2899-2906.	1.8	131
32	Origin and function of stomata in the moss Physcomitrella patens. Nature Plants, 2016, 2, 16179.	4.7	138
33	An ancestral stomatal patterning module revealed in the non-vascular land plant <i>Physcomitrella patens</i> . Development (Cambridge), 2016, 143, 3306-14.	1.2	56
34	Balancing Water Uptake and Loss through the Coordinated Regulation of Stomatal and Root Development. PLoS ONE, 2016, 11, e0156930.	1.1	30
35	Manipulating stomatal density enhances drought tolerance without deleterious effect on nutrient uptake. New Phytologist, 2015, 208, 336-341.	3.5	151
36	Stomatal Closure: The Old Guard Takes Up the SLAC. Current Biology, 2015, 25, R271-R273.	1.8	12

#	Article	IF	Citations
37	Increasing waterâ€use efficiency directly through genetic manipulation of stomatal density. New Phytologist, 2015, 207, 188-195.	3.5	270
38	Elevated CO 2 -Induced Responses in Stomata Require ABA and ABA Signaling. Current Biology, 2015, 25, 2709-2716.	1.8	201
39	Putting the brakes on: abscisic acid as a central environmental regulator of stomatal development. New Phytologist, 2014, 202, 376-391.	3.5	117
40	Light-Induced Stomatal Opening Is Affected by the Guard Cell Protein Kinase APK1b. PLoS ONE, 2014, 9, e97161.	1.1	27
41	New Phytologist next generation scientists. New Phytologist, 2014, 204, 736-737.	3.5	2
42	Nitric Oxide Sensing in Plants Is Mediated by Proteolytic Control of Group VII ERF Transcription Factors. Molecular Cell, 2014, 53, 369-379.	4.5	312
43	Corrigendum to "Early evolutionary acquisition of stomatal control and development gene signalling networks―[Curr. Opin. Plant Biol. 16 (5) (2013) 638–646]. Current Opinion in Plant Biology, 2014, 18, 117-118.	3.5	0
44	Early evolutionary acquisition of stomatal control and development gene signalling networks. Current Opinion in Plant Biology, 2013, 16, 638-646.	3.5	54
45	Genome-wide transcriptomic analysis of the sporophyte of the moss Physcomitrella patens. Journal of Experimental Botany, 2013, 64, 3567-3581.	2.4	48
46	Genetic manipulation of stomatal density influences stomatal size, plant growth and tolerance to restricted water supply across a growth carbon dioxide gradient. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 547-555.	1.8	263
47	Peptides Modulating Development of Specialized Cells. Signaling and Communication in Plants, 2012, , 93-106.	0.5	1
48	Expression and manipulation of <i>PHOSPHOENOLPYRUVATE CARBOXYKINASE 1</i> iv identifies a role for malate metabolism in stomatal closure. Plant Journal, 2012, 69, 679-688.	2.8	81
49	Regulatory Mechanism Controlling Stomatal Behavior Conserved across 400 Million Years of Land Plant Evolution. Current Biology, 2011, 21, 1025-1029.	1.8	180
50	Land Plants Acquired Active Stomatal Control Early in Their Evolutionary History. Current Biology, 2011, 21, 1030-1035.	1.8	162
51	The signalling peptide EPFL9 is a positive regulator of stomatal development. New Phytologist, 2010, 186, 609-614.	3.5	137
52	BASL and EPF2 act independently to regulate asymmetric divisions during stomatal development. Plant Signaling and Behavior, 2010, 5, 278-280.	1.2	4
53	phytochrome B and PIF4 Regulate Stomatal Development in Response to Light Quantity. Current Biology, 2009, 19, 229-234.	1.8	164
54	The Signaling Peptide EPF2 Controls Asymmetric Cell Divisions during Stomatal Development. Current Biology, 2009, 19, 864-869.	1.8	346

#	Article	IF	Citations
55	The relationship between pyridine nucleotides and seed dormancy. New Phytologist, 2009, 181, 62-70.	3.5	35
56	Influence of environmental factors on stomatal development. New Phytologist, 2008, 178, 9-23.	3.5	300
57	Involvement of sphingosine kinase in plant cell signalling. Plant Journal, 2008, 56, 64-72.	2.8	109
58	Control of stomatal development. Comparative Biochemistry and Physiology Part A, Molecular & Samp; Integrative Physiology, 2008, 150, S144.	0.8	0
59	Intercellular Peptide Signals Regulate Plant Meristematic Cell Fate Decisions. Science Signaling, 2008, 1, pe53.	1.6	11
60	Phospho enol pyruvate Carboxykinase in Arabidopsis: Changes in Gene Expression, Protein and Activity during Vegetative and Reproductive Development. Plant and Cell Physiology, 2007, 48, 441-450.	1.5	51
61	Coordinate Regulation of Phosphoenolpyruvate Carboxylase and Phosphoenolpyruvate Carboxykinase by Light and CO2 during C4 Photosynthesis. Plant Physiology, 2007, 144, 479-486.	2.3	49
62	Nicotinamidase activity is important for germination. Plant Journal, 2007, 51, 341-351.	2.8	106
63	Plant Development: Three Steps for Stomata. Current Biology, 2007, 17, R213-R215.	1.8	24
64	Differential adaptation of two varieties of common bean to abiotic stress. Journal of Experimental Botany, 2006, 57, 699-709.	2.4	67
65	Systemic signalling of environmental cues in Arabidopsis leaves. Journal of Experimental Botany, 2006, 57, 329-341.	2.4	150
66	Plant immunophilins: functional versatility beyond protein maturation. New Phytologist, 2005, 166, 753-769.	3.5	99
67	Guard Cells: Transcription Factors Regulate Stomatal Movements. Current Biology, 2005, 15, R593-R595.	1.8	27
68	The Arabidopsis Cyclophilin Gene Family. Plant Physiology, 2004, 134, 1268-1282.	2.3	212
69	Arabidopsis AtCYP20-2 Is a Light-Regulated Cyclophilin-Type Peptidyl-Prolyl cis-trans Isomerase Associated with the Photosynthetic Membranes. Plant Physiology, 2004, 134, 1244-1247.	2.3	37
70	Geneâ€specific expression and calcium activation of Arabidopsis thaliana phospholipase C isoforms. New Phytologist, 2004, 162, 643-654.	3.5	92
71	Plant Development: YODA the Stomatal Switch. Current Biology, 2004, 14, R488-R490.	1.8	31
72	Phospholipase C is required for the control of stomatal aperture by ABA. Plant Journal, 2003, 34, 47-55.	2.8	130

#	Article	IF	Citations
73	Signals from the cuticle affect epidermal cell differentiation. New Phytologist, 2003, 157, 9-23.	3.5	99
74	The effects of manipulating phospholipase C on guard cell ABA-signalling. Journal of Experimental Botany, 2003, 55, 199-204.	2.4	47
75	A role for the cuticular waxes in the environmental control of stomatal development. New Phytologist, 2002, 153, 433-439.	3.5	54
76	A role for nuclear localised proteasomes in mediating auxin action. Plant Journal, 2002, 30, 691-698.	2.8	3
77	Calciumâ€based signalling systems in guard cells. New Phytologist, 2001, 151, 109-120.	3.5	45
78	Ripening-related occurrence of phosphoenolpyruvate carboxykinase in tomato fruit. Plant Molecular Biology, 2001, 47, 499-506.	2.0	54
79	ABA signalling: A messenger's FIERY fate. Current Biology, 2001, 11, R968-R970.	1.8	8
80	Ca2+ signalling in stomatal guard cells. Biochemical Society Transactions, 2000, 28, 476-481.	1.6	58
81	The HIC signalling pathway links CO2 perception to stomatal development. Nature, 2000, 408, 713-716.	13.7	356
82	Ca2+signalling in stomatal guard cells. Biochemical Society Transactions, 2000, 28, 476-81.	1.6	19
83	Abscisic acid induces oscillations in guard-cell cytosolic free calcium that involve phosphoinositide-specific phospholipase C. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 1779-1784.	3.3	369
84	Expression of a proteasome alpha-type subunit gene during tobacco development and senescence., 1999, 39, 325-333.		34
85	The control of specificity in guard cell signal transduction. Philosophical Transactions of the Royal Society B: Biological Sciences, 1998, 353, 1489-1494.	1.8	28
86	Molecular and Enzymatic Characterization of Three Phosphoinositide-Specific Phospholipase C Isoforms from Potato1. Plant Physiology, 1998, 116, 239-250.	2.3	123
87	113 Conservation of proteasome structure and activity between plants and other eukaryotes. Biochemical Society Transactions, 1998, 26, S395-S395.	1.6	2
88	115 Phosphoinositide signal transduction in guard cells. Biochemical Society Transactions, 1998, 26, S397-S397.	1.6	0
89	Pollination-enhanced expression of a receptor-like protein kinase related gene in tobacco styles. , 1997, 33, 653-665.		21
90	A role for glutamate decarboxylase during tomato ripening: the characterisation of a cDNA encoding a putative glutamate decarboxylase with a calmodulin-binding site. Plant Molecular Biology, 1995, 27, 1143-1151.	2.0	50

#	Article	IF	Citations
91	The manipulation and modification of tomato fruit ripening by expression of antisense RNA in transgenic plants. Euphytica, 1995, 85, 193-202.	0.6	13
92	Ethylene Genes and Fruit Ripening. , 1995, , 372-394.		7
93	The manipulation and modification of tomato fruit ripening by expression of antisense RNA in transgenic plants. Developments in Plant Breeding, 1995, , 193-202.	0.2	4
94	The use of transgenic and naturally occurring mutants to understand and manipulate tomato fruit ripening. Plant, Cell and Environment, 1994, 17, 557-571.	2.8	117
95	The Molecular Biology of Fruit Ripening. , 1994, , 287-299.		1
96	A histidine decarboxylase-like mRNA is involved in tomato fruit ripening. Plant Molecular Biology, 1993, 23, 627-631.	2.0	29
97	cDNA cloning and characterisation of novel ripening-related mRNAs with altered patterns of accumulation in the ripening inhibitor (rin) tomato ripening mutant. Plant Molecular Biology, 1993, 23, 193-207.	2.0	74
98	Sequence of a Cloned Tomato Ubiquitin Conjugating Enzyme. Plant Physiology, 1993, 103, 1471-1472.	2.3	8
99	Altered Gene Expression, Leaf Senescence, and Fruit Ripening by Inhibiting Ethylene Synthesis with EFE-Antisense Genes. Current Plant Science and Biotechnology in Agriculture, 1993, , 82-89.	0.0	2
100	Selfâ€incompatibility: insights through microscopy. Journal of Microscopy, 1992, 166, 137-148.	0.8	9
101	Molecular biology of fruit ripening and its manipulation with antisense genes. Plant Molecular Biology, 1992, 19, 69-87.	2.0	217
102	Molecular biology of fruit ripening and its manipulation with antisense genes., 1992,, 69-87.		2
103	Self-Incompatibility as a Model for Cell-Cell Recognition in Flowering Plants. , 1991, , 527-536.		1
104	Action of the Style Product of the Self-Incompatibility Gene of Nicotiana alata (S-RNase) on in Vitro-Grown Pollen Tubes Plant Cell, 1991, 3, 271-283.	3.1	129
105	Action of the Style Product of the Self-Incompatibility Gene of Nicotiana alata (S-RNase) on in Vitro-Grown Pollen Tubes. Plant Cell, 1991, 3, 271.	3.1	36
106	Self-incompatibility in Nicotiana alata involves degradation of pollen rRNA. Nature, 1990, 347, 757-760.	13.7	362
107	Inheritance and effect on ripening of antisense polygalacturonase genes in transgenic tomatoes. Plant Molecular Biology, 1990, 14, 369-379.	2.0	339
108	Self-incompatibility: a self-recognition system in plants. Science, 1990, 250, 937-941.	6.0	195

#	Article	IF	CITATIONS
109	Control and manipulation of gene expression during tomato fruit ripening. Plant Molecular Biology, 1989, 13, 303-311.	2.0	43
110	Gene expression during tomato ripening. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 1986, 314, 399-410.	2.4	63