
Hui Lou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2381286/publications.pdf Version: 2024-02-01

Huilou

#	Article	IF	CITATIONS
1	Dry reforming of methane over nickel catalysts supported on magnesium aluminate spinels. Applied Catalysis A: General, 2004, 273, 75-82.	4.3	582
2	The deposition of coke from methane on a Ni/MgAl2O4 catalyst. Carbon, 2007, 45, 1314-1321.	10.3	274
3	Catalytic upgrading of bio-oil by HZSM-5 in sub- and super-critical ethanol. Bioresource Technology, 2009, 100, 3415-3418.	9.6	182
4	Transesterification of sunflower oil to biodiesel on ZrO2 supported La2O3 catalyst. Bioresource Technology, 2010, 101, 953-958.	9.6	173
5	Nanostructured molybdenum carbides supported on carbon nanotubes as efficient catalysts for one-step hydrodeoxygenation and isomerization of vegetable oils. Green Chemistry, 2011, 13, 2561.	9.0	141
6	Selective hydrogenation of furfural to tetrahydrofurfuryl alcohol over Ni/CNTs and bimetallic Cu Ni/CNTs catalysts. International Journal of Hydrogen Energy, 2016, 41, 14721-14731.	7.1	129
7	One-step hydrogenation–esterification of furfural and acetic acid over bifunctional Pd catalysts for bio-oil upgrading. Bioresource Technology, 2011, 102, 8241-8246.	9.6	107
8	Upgrading of low-boiling fraction of bio-oil in supercritical methanol and reaction network. Bioresource Technology, 2011, 102, 4884-4889.	9.6	99
9	Upgrading of Bio-oil over Aluminum Silicate in Supercritical Ethanol. Energy & Fuels, 2008, 22, 3489-3492.	5.1	97
10	Carbonâ€ S upported Molybdenum Carbide Catalysts for the Conversion of Vegetable Oils. ChemSusChem, 2012, 5, 727-733.	6.8	93
11	One-pot synthesized mesoporous Ca/SBA-15 solid base for transesterification of sunflower oil with methanol. Applied Catalysis A: General, 2010, 390, 26-34.	4.3	78
12	Diesel-like hydrocarbons obtained by direct hydrodeoxygenation of sunflower oil over Pd/Al-SBA-15 catalysts. Catalysis Communications, 2012, 17, 76-80.	3.3	76
13	Upgrading of high-boiling fraction of bio-oil in supercritical methanol. Bioresource Technology, 2011, 102, 9223-9228.	9.6	73
14	Molybdenum Carbideâ€Catalyzed Conversion of Renewable Oils into Dieselâ€like Hydrocarbons. Advanced Synthesis and Catalysis, 2011, 353, 2577-2583.	4.3	72
15	Palladium-catalyzed decarboxylation of higher aliphatic esters: Towards a new protocol to the second generation biodiesel production. Green Chemistry, 2010, 12, 463.	9.0	69
16	Biodiesel Production from Transesterification of Rapeseed Oil Using KF/Eu ₂ O ₃ as a Catalyst. Energy & Fuels, 2008, 22, 2756-2760.	5.1	66
17	Highly dispersed molybdenum carbide nanoparticles supported on activated carbon as an efficient catalyst for the hydrodeoxygenation of vanillin. RSC Advances, 2015, 5, 43141-43147.	3.6	63
18	The reactivity of surface active carbonaceous species with CO2 and its role on hydrocarbon conversion reactions. Journal of Molecular Catalysis A, 2010, 316, 1-7.	4.8	54

Hui Lou

#	Article	IF	CITATIONS
19	Carbon nanofibers supported molybdenum carbide catalysts for hydrodeoxygenation of vegetable oils. RSC Advances, 2013, 3, 17485.	3.6	54
20	Characterization of Cuâ^'Mn/Zeolite-Y Catalyst for One-Step Synthesis of Dimethyl Ether from COâ^'H ₂ . Energy & Fuels, 2008, 22, 2877-2884.	5.1	43
21	Mesoporous Li/ZrO2 as a solid base catalyst for biodiesel production from transesterification of soybean oil with methanol. Catalysis Communications, 2011, 12, 606-610.	3.3	38
22	Influence of solvent on upgrading of phenolic compounds in pyrolysis bio-oil. RSC Advances, 2014, 4, 49924-49929.	3.6	37
23	In situ catalytic conversion of biomass fast pyrolysis vapors on HZSM‑5. Journal of Energy Chemistry, 2016, 25, 427-433.	12.9	37
24	Carbonâ€Supported Molybdenumâ€Based Catalysts for the Hydrodeoxygenation of Maize Oil. ChemCatChem, 2014, 6, 2698-2705.	3.7	36
25	Palladium catalysts supported on carbon–nitrogen composites for aqueous-phase hydrogenation of phenol. Catalysis Science and Technology, 2015, 5, 2300-2304.	4.1	30
26	Aqueous-phase reforming of the low-boiling fraction of rice husk pyrolyzed bio-oil in the presence of platinum catalyst for hydrogen production. Bioresource Technology, 2012, 125, 335-339.	9.6	27
27	Recyclable CeO2–ZrO2 and CeO2–TiO2 mixed oxides based Pt catalyst for aqueous-phase reforming of the low-boiling fraction of bio-oil. International Journal of Hydrogen Energy, 2017, 42, 9577-9588.	7.1	26
28	Aqueous-phase reforming of the low-boiling fraction of bio-oil for hydrogen production: The size effect of Pt/Al2O3. International Journal of Hydrogen Energy, 2015, 40, 14798-14805.	7.1	23
29	Improvement of stability of out-layer MgAl2O4 spinel for a Ni/MgAl2O4/Al2O3 catalyst in dry reforming of methane. Reaction Kinetics and Catalysis Letters, 2005, 84, 93-100.	0.6	22
30	A general synthesis strategy of multi-metallic nanoparticles within mesoporous titania via in situ photo-deposition. Journal of Materials Chemistry A, 2014, 2, 17321-17328.	10.3	22
31	Palladiumâ€Catalyzed Transformation of Renewable Oils into Diesel Components. Advanced Synthesis and Catalysis, 2010, 352, 1805-1809.	4.3	20
32	Hydrogenation in supercritical conditions catalyzed by palladium supported on modified activated carbon. RSC Advances, 2015, 5, 66704-66710.	3.6	19
33	Room temperature transesterification of soybean oil to biodiesel catalyzed by rod-like Ca SiO+2 solid base. Catalysis Communications, 2011, 12, 1005-1008.	3.3	17
34	Effects of graphitization of carbon nanospheres on hydrodeoxygenation activity of molybdenum carbide. Catalysis Science and Technology, 2018, 8, 4199-4208.	4.1	14
35	Title is missing!. Journal of Materials Chemistry, 2001, 11, 2971-2973.	6.7	13
36	Hydrodeoxygenation of Bio-Derived Phenol to Cyclohexane Fuel Catalyzed by Bifunctional Mesoporous Organic–Inorganic Hybrids. Frontiers in Chemistry, 2018, 6, 216.	3.6	7

Hui Lou

#	Article	IF	CITATIONS
37	Synthesis, Crystal Structure and Reducibility of K ₂ NiF ₄ Type Oxides Sm _{2â€<i>x</i>} Sr <i>_x</i> CuO ₄ . Chinese Journal of Chemistry, 2002, 20, 346-351.	4.9	4
38	Adsorption properties of methane on Mo and Pd–Ga loaded HZSM-5 at mild temperature. Catalysis Letters, 2007, 116, 143-148.	2.6	3
39	Syngas production from methane reforming with O2 and CO2 over Ni–La2O3/SiO2 catalysts using EDTA salt precursors. Reaction Kinetics and Catalysis Letters, 2009, 98, 303-309.	0.6	3
40	Synthesis and characterization of CeO2 by the hydrothermal method assisted by carboxymethylcellulose sodium. Reaction Kinetics and Catalysis Letters, 2009, 98, 311-318.	0.6	3
41	Improving the catalytic efficiency of carbon-based active sites by trace oxide promoters for highly productive olefin synthesis. Catalysis Science and Technology, 2017, 7, 802-806.	4.1	3
42	Autothermal Reforming and Partial Oxidation of Methane in Fluidized Reactor over Highly Dispersed Ni Catalyst Prepared from Ni Complex. Chinese Journal of Chemistry, 2006, 24, 721-723.	4.9	2
43	Improvement of stability of out-layer MgAl <subscript>2</subscript> O <subscript>4</subscript> spinel for a Ni/MgAl <subscript>2</subscript> O <subscript>4</subscript> /Al <subscript>2</subscript> O <subscript>3</subscript> catalyst in dry reforming of methane. Reaction Kinetics and Catalysis Letters. 2005. 84, 93-100.	cript>	1