
## Jordi Corominas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/23811/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Engineering<br>Geology, 2008, 102, 85-98.                                                                 | 6.3 | 834       |
| 2  | Recommendations for the quantitative analysis of landslide risk. Bulletin of Engineering Geology and the Environment, 2014, 73, 209.                                                             | 3.5 | 541       |
| 3  | The angle of reach as a mobility index for small and large landslides. Canadian Geotechnical Journal, 1996, 33, 260-271.                                                                         | 2.8 | 474       |
| 4  | Guidelines for landslide susceptibility, hazard and risk zoning for land-use planning. Engineering<br>Geology, 2008, 102, 99-111.                                                                | 6.3 | 429       |
| 5  | Using Global Positioning System techniques in landslide monitoring. Engineering Geology, 2000, 55, 167-192.                                                                                      | 6.3 | 357       |
| 6  | Assessment of shallow landslide susceptibility by means of multivariate statistical techniques. Earth<br>Surface Processes and Landforms, 2001, 26, 1251-1263.                                   | 2.5 | 326       |
| 7  | Reconstructing recent landslide activity in relation to rainfall in the Llobregat River basin, Eastern<br>Pyrenees, Spain. Geomorphology, 1999, 30, 79-93.                                       | 2.6 | 220       |
| 8  | Prediction of ground displacements and velocities from groundwater level changes at the Vallcebre<br>landslide (Eastern Pyrenees, Spain). Landslides, 2005, 2, 83-96.                            | 5.4 | 220       |
| 9  | A review of assessing landslide frequency for hazard zoning purposes. Engineering Geology, 2008, 102, 193-213.                                                                                   | 6.3 | 210       |
| 10 | Classic and new dating methods for assessing the temporal occurrence of mass movements.<br>Geomorphology, 1999, 30, 33-52.                                                                       | 2.6 | 186       |
| 11 | A GIS-Based Multivariate Statistical Analysis for Shallow Landslide Susceptibility Mapping in La Pobla<br>de Lillet Area (Eastern Pyrenees, Spain). Natural Hazards, 2003, 30, 281-295.          | 3.4 | 152       |
| 12 | Quantitative assessment of the residual risk in a rockfall protected area. Landslides, 2005, 2, 343-357.                                                                                         | 5.4 | 152       |
| 13 | Measurement of landslide displacements using a wire extensometer. Engineering Geology, 2000, 55, 149-166.                                                                                        | 6.3 | 102       |
| 14 | Canelles landslide: modelling rapid drawdown and fast potential sliding. Landslides, 2012, 9, 33-51.                                                                                             | 5.4 | 102       |
| 15 | Integrated Landslide Susceptibility Analysis and Hazard Assessment in the Principality of Andorra.<br>Natural Hazards, 2003, 30, 421-435.                                                        | 3.4 | 101       |
| 16 | Atmospheric Phase Screen Compensation in Ground-Based SAR With a Multiple-Regression Model Over<br>Mountainous Regions. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52, 2436-2449. | 6.3 | 94        |
| 17 | A fractal fragmentation model for rockfalls. Landslides, 2017, 14, 875-889.                                                                                                                      | 5.4 | 76        |
| 18 | Vulnerability assessment for reinforced concrete buildings exposed to landslides. Bulletin of Engineering Geology and the Environment, 2014, 73, 265.                                            | 3.5 | 68        |

JORDI COROMINAS

| #  | Article                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | A methodology to obtain the block size distribution of fragmental rockfall deposits. Landslides, 2015, 12, 815-825.                                                                                                            | 5.4 | 66        |
| 20 | Vulnerability of simple reinforced concrete buildings to damage by rockfalls. Landslides, 2010, 7,<br>169-180.                                                                                                                 | 5.4 | 64        |
| 21 | Interferometric SAR monitoring of the Vallcebre landslide (Spain) using corner reflectors. Natural<br>Hazards and Earth System Sciences, 2013, 13, 923-933.                                                                    | 3.6 | 60        |
| 22 | Contribution of dendrochronology to the determination of magnitude–frequency relationships for<br>landslides. Geomorphology, 2010, 124, 137-149.                                                                               | 2.6 | 59        |
| 23 | Magnitude–frequency relation for rockfall scars using a Terrestrial Laser Scanner. Engineering<br>Geology, 2012, 145-146, 50-64.                                                                                               | 6.3 | 57        |
| 24 | Rockfall risk assessment to persons travelling in vehicles along a road: the case study of the Amalfi coastal road (southern Italy). Natural Hazards, 2012, 62, 691-721.                                                       | 3.4 | 57        |
| 25 | Tree-ring based assessment of rockfall frequency on talus slopes at Solà d'Andorra, Eastern Pyrenees.<br>Geomorphology, 2010, 118, 393-408.                                                                                    | 2.6 | 47        |
| 26 | Largeâ€scale rock slope failures in the eastern pyrenees: identifying a sparse but significant population<br>in paraglacial and parafluvial contexts. Geografiska Annaler, Series A: Physical Geography, 2014, 96,<br>357-391. | 1.5 | 47        |
| 27 | An expert judgement approach to determining the physical vulnerability of roads to debris flow.<br>Bulletin of Engineering Geology and the Environment, 2014, 73, 291-305.                                                     | 3.5 | 46        |
| 28 | Rockfall vulnerability assessment for reinforced concrete buildings. Natural Hazards and Earth<br>System Sciences, 2010, 10, 2055-2066.                                                                                        | 3.6 | 45        |
| 29 | PSI Deformation Map Retrieval by Means of Temporal Sublook Coherence on Reduced Sets of SAR<br>Images. Remote Sensing, 2015, 7, 530-563.                                                                                       | 4.0 | 41        |
| 30 | RockGIS: a GIS-based model for the analysis of fragmentation in rockfalls. Landslides, 2017, 14, 1565-1578.                                                                                                                    | 5.4 | 41        |
| 31 | The Barranco de Arás flood of 7 August 1996 (Biescas, Central Pyrenees, Spain). Engineering Geology,<br>1999, 51, 237-255.                                                                                                     | 6.3 | 40        |
| 32 | Landslide hazard, monitoring and conservation strategy for the safeguard of Vardzia Byzantine monastery complex, Georgia. Landslides, 2015, 12, 193-204.                                                                       | 5.4 | 40        |
| 33 | Quantitative analysis of risk from fragmental rockfalls. Landslides, 2019, 16, 5-21.                                                                                                                                           | 5.4 | 37        |
| 34 | Size Distribution for Potentially Unstable Rock Masses and In Situ Rock Blocks Using LIDAR-Generated<br>Digital Elevation Models. Rock Mechanics and Rock Engineering, 2015, 48, 1589-1604.                                    | 5.4 | 36        |
| 35 | Analysis of the evolution of ground movements in a low densely urban area by means of DInSAR technique. Engineering Geology, 2014, 170, 52-65.                                                                                 | 6.3 | 34        |
| 36 | Magnitude and frequency relations: are there geological constraints to the rockfall size?. Landslides, 2018, 15, 829-845.                                                                                                      | 5.4 | 34        |

JORDI COROMINAS

| #  | Article                                                                                                                                                                                                                 | IF              | CITATIONS    |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|
| 37 | Preparing first-time slope failures hazard maps: from pixel-based to slope unit-based. Landslides, 2020, 17, 249-265.                                                                                                   | 5.4             | 33           |
| 38 | The deep-seated slope deformation at Encampadana, Andorra: Representation of morphologic features by numerical modelling. Engineering Geology, 2006, 83, 343-357.                                                       | 6.3             | 32           |
| 39 | Analysis of Rockfalls by Means of a Fractal Fragmentation Model. Rock Mechanics and Rock<br>Engineering, 2020, 53, 1433-1455.                                                                                           | 5.4             | 31           |
| 40 | Effects of the foot evolution on the behaviour of slow-moving landslides. Engineering Geology, 2011, 117, 217-228.                                                                                                      | 6.3             | 30           |
| 41 | Rockfall Occurrence and Fragmentation. , 2017, , 75-97.                                                                                                                                                                 |                 | 30           |
| 42 | Methodology to evaluate rock slope stability under seismic conditions at Solà de Santa Coloma,<br>Andorra. Natural Hazards and Earth System Sciences, 2009, 9, 1763-1773.                                               | 3.6             | 28           |
| 43 | Landslide Monitoring Using Multi-Temporal SAR Interferometry with Advanced Persistent Scatterers<br>Identification Methods and Super High-Spatial Resolution TerraSAR-X Images. Remote Sensing, 2018, 10,<br>921.       | 4.0             | 26           |
| 44 | Evidence of basal erosion and shearing as mechanisms contributing the development of lateral ridges<br>in mudslides, flow-slides, and other flow-like gravitational movements. Engineering Geology, 1995, 39,<br>45-70. | 6.3             | 20           |
| 45 | Non-interferometric GB-SAR measurement: application to the Vallcebre landslide (eastern Pyrenees,) Tj ETQq1 1                                                                                                           | 0.784314<br>3.6 | rgBT /Overlo |
| 46 | Integrated risk assessment due to slope instabilities in the roadway network of Gipuzkoa, Basque<br>Country. Natural Hazards and Earth System Sciences, 2019, 19, 399-419.                                              | 3.6             | 20           |
| 47 | Simulation of Full-Scale Rockfall Tests with a Fragmentation Model. Geosciences (Switzerland), 2020, 10, 168.                                                                                                           | 2.2             | 20           |
| 48 | Comparing rockfall scar volumes and kinematically detachable rock masses. Engineering Geology, 2017, 219, 64-73.                                                                                                        | 6.3             | 19           |
| 49 | Seismic Energy Analysis as Generated by Impact and Fragmentation of Singleâ€Block Experimental<br>Rockfalls. Journal of Geophysical Research F: Earth Surface, 2018, 123, 1450-1478.                                    | 2.8             | 19           |
| 50 | The Barranco de Tirajana basin, Gran Canaria (Spain). A major erosive landform caused by large<br>landslides. Geomorphology, 2002, 42, 117-130.                                                                         | 2.6             | 17           |
| 51 | Landslide hazard management practices in the world. Landslides, 2005, 2, 245-246.                                                                                                                                       | 5.4             | 16           |
| 52 | Definitions and Concepts for Quantitative Rockfall Hazard and Risk Analysis. Geosciences<br>(Switzerland), 2021, 11, 158.                                                                                               | 2.2             | 16           |
| 53 | A textural classification of argillaceous rocks and their durability. Landslides, 2015, 12, 669-687.                                                                                                                    | 5.4             | 12           |
| 54 | Evaluation of Maximum Rockfall Dimensions Based on Probabilistic Assessment of the Penetration of the Sliding Planes into the Slope. Rock Mechanics and Rock Engineering, 2020, 53, 2301-2312.                          | 5.4             | 12           |

JORDI COROMINAS

| #  | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Stability analysis of the Vallcebre translational slide, Eastern Pyrenees (Spain) by means of a GIS.<br>Natural Hazards, 2003, 30, 473-485.                                                                               | 3.4 | 11        |
| 56 | Rockfalls: analysis of the block fragmentation through field experiments. Landslides, 2022, 19, 1009-1029.                                                                                                                | 5.4 | 11        |
| 57 | Postglacial deformation history of sackungen on the northern slope of Pic d'Encampadana, Andorra.<br>Geomorphology, 2019, 337, 134-150.                                                                                   | 2.6 | 10        |
| 58 | Analysis of Fragmentation of Rock Blocks from Real-Scale Tests. Geosciences (Switzerland), 2020, 10,<br>308.                                                                                                              | 2.2 | 10        |
| 59 | Glossary of Terms on Landslide Hazard and Risk. , 2015, , 1775-1779.                                                                                                                                                      |     | 9         |
| 60 | Calculation of the rockwall recession rate of a limestone cliff, affected by rockfalls, using<br>cosmogenic chlorine-36. Case study of the Montsec Range (Eastern Pyrenees, Spain). Geomorphology,<br>2018, 306, 325-335. | 2.6 | 9         |
| 61 | Capturing rockfall kinematic and fragmentation parameters using high-speed camera system.<br>Engineering Geology, 2022, 302, 106629.                                                                                      | 6.3 | 9         |
| 62 | Behaviour of the Weak Rock Cut Slopes and Their Characterization Using the Results of the Slake<br>Durability Test. Lecture Notes in Earth Sciences, 0, , 405-413.                                                        | 0.5 | 8         |
| 63 | Past, Present and Future Monitoring at the Vallcebre Landslide (Eastern Pyrenees, Spain). Applied<br>Sciences (Switzerland), 2021, 11, 571.                                                                               | 2.5 | 8         |
| 64 | Methods for the Characterization of the Vulnerability of Elements at Risk. Advances in Natural and<br>Technological Hazards Research, 2014, , 233-273.                                                                    | 1.1 | 7         |
| 65 | Experimental study on rockfall fragmentation: In situ test design and first results. , 2016, , 983-990.                                                                                                                   |     | 6         |
| 66 | Comparison of block size distribution in rockfalls. , 2016, , 1767-1774.                                                                                                                                                  |     | 6         |
| 67 | Assessment of the Rockfall Frequency for Hazard Analysis at Solà d'Andorra (Eastern Pyrenees).<br>Advances in Global Change Research, 2010, , 161-175.                                                                    | 1.6 | 6         |
| 68 | Introduction: The components of Risk Governance. Advances in Natural and Technological Hazards<br>Research, 2014, , 1-27.                                                                                                 | 1.1 | 5         |
| 69 | Landslide risk assessment and zoning. , 1992, , 141-173.                                                                                                                                                                  |     | 4         |
| 70 | The angle of reach as a mobility index for small and large landslides: Reply. Canadian Geotechnical<br>Journal, 1996, 33, 1029-1031.                                                                                      | 2.8 | 4         |
| 71 | TXT-tool 4.034-1.1: Quantitative Rockfall Risk Assessment for Roadways and Railways. , 2018, , 509-519.                                                                                                                   |     | 4         |
| 72 | 7.27 Avoidance and Protection Measures. , 2013, , 259-272.                                                                                                                                                                |     | 3         |

Jordi Corominas

| #  | Article                                                                                                                                                                                   | IF                | CITATIONS         |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|
| 73 | Discussion on "Large landslides associated with a diapiric fold in Canelles reservoir (Spanish) Tj ETQq1 1 0.78<br>imaging―by Gutiérrez et al. (2015). Geomorphology, 2016, 263, 170-174. | 84314 rg₿7<br>2.6 | 「/Overlock ]<br>3 |
| 74 | Quantitative Rockfall Risk Assessment in the Roadways of Gipuzkoa. , 2015, , 1813-1816.                                                                                                   |                   | 3                 |
| 75 | Comparing Satellite Based and Ground Based Radar Interferometry and Field Observations at the Canillo Landslide (Pyrenees). , 2015, , 333-337.                                            |                   | 3                 |
| 76 | Comparing kinematically detachable rock masses and rockfall scar volumes. IOP Conference Series:<br>Earth and Environmental Science, 2015, 26, 012020.                                    | 0.3               | 2                 |
| 77 | Rockfall and Debris Flow Hazard Assessment of the Coastal Road of Gipuzkoa (Northern Spain). , 2013, , 223-229.                                                                           |                   | 2                 |
| 78 | Disaster Mitigation by Corrective and Protection Measures. Advances in Natural and Technological<br>Hazards Research, 2014, , 303-326.                                                    | 1.1               | 2                 |
| 79 | Simulation of rockfall fragmentation mechanism in a GIS-based tool. , 2016, , .                                                                                                           |                   | 1                 |
| 80 | Avoidance and Protection Measures. , 2013, , 569-584.                                                                                                                                     |                   | 1                 |
| 81 | Landslide monitoring with staring-spotlight data: Canillo case study. , 2017, , .                                                                                                         |                   | 0                 |
| 82 | TXT-tool 3.034-1.1: A Textural Classification of Argillaceous Rocks and Their Durability. , 2018, , 421-433.                                                                              |                   | 0                 |
| 83 | Hydrological modelling of the Vallcebre landslide. , 2008, , 1517-1523.                                                                                                                   |                   | 0                 |