
Yu-Shi He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2381035/publications.pdf Version: 2024-02-01

VII-SHI HE

#	Article	lF	CITATIONS
1	Single-crystal nickel-rich layered-oxide battery cathode materials: synthesis, electrochemistry, and intra-granular fracture. Energy Storage Materials, 2020, 27, 140-149.	9.5	342
2	Sulfurâ€Based Composite Cathode Materials for Highâ€Energy Rechargeable Lithium Batteries. Advanced Materials, 2015, 27, 569-575.	11.1	293
3	Structure optimization of Prussian blue analogue cathode materials for advanced sodium ion batteries. Chemical Communications, 2014, 50, 13377-13380.	2.2	213
4	Low-temperature performance of LiFePO4/C cathode in a quaternary carbonate-based electrolyte. Electrochemistry Communications, 2008, 10, 691-694.	2.3	184
5	Electrochemical properties of P2-Na2/3[Ni1/3Mn2/3]O2 cathode material for sodium ion batteries when cycled in different voltage ranges. Electrochimica Acta, 2013, 113, 200-204.	2.6	176
6	Prussian blue without coordinated water as a superior cathode for sodium-ion batteries. Chemical Communications, 2015, 51, 8181-8184.	2.2	149
7	A Co(OH)2â~'graphene nanosheets composite as a high performance anode material for rechargeable lithium batteries. Electrochemistry Communications, 2010, 12, 570-573.	2.3	142
8	Multilayered Graphene Hydrogel Membranes for Guided Bone Regeneration. Advanced Materials, 2016, 28, 4025-4031.	11.1	130
9	Carbon coated SnO ₂ nanoparticles anchored on CNT as a superior anode material for lithium-ion batteries. Nanoscale, 2016, 8, 4121-4126.	2.8	129
10	Biomimetic Glycopolypeptide Hydrogels with Tunable Adhesion and Microporous Structure for Fast Hemostasis and Highly Efficient Wound Healing. Advanced Functional Materials, 2021, 31, 2105628.	7.8	123
11	Facile Spray Drying Route for the Three-Dimensional Graphene-Encapsulated Fe2O3 Nanoparticles for Lithium Ion Battery Anodes. Industrial & Engineering Chemistry Research, 2013, 52, 1197-1204.	1.8	116
12	Large-Scale Synthesis of NaNi _{1/3} Fe _{1/3} Mn _{1/3} O ₂ as High Performance Cathode Materials for Sodium Ion Batteries. Journal of the Electrochemical Society, 2016, 163, A565-A570.	1.3	110
13	Self‣upporting Graphene Hydrogel Film as an Experimental Platform to Evaluate the Potential of Graphene for Bone Regeneration. Advanced Functional Materials, 2013, 23, 3494-3502.	7.8	108
14	Electrochemical characteristics and intercalation mechanism of ZnS/C composite as anode active material for lithium-ion batteries. Electrochimica Acta, 2011, 56, 1213-1218.	2.6	97
15	Insight into Ca‧ubstitution Effects on O3â€īype NaNi _{1/3} Fe _{1/3} Mn _{1/3} O ₂ Cathode Materials for Sodiumâ€ion Batteries Application. Small, 2018, 14, e1704523.	5.2	97
16	Effects of fluorine-substitution on the electrochemical behavior of LiFePO4/C cathode materials. Journal of Power Sources, 2007, 174, 720-725.	4.0	89
17	A novel bath lily-like graphene sheet-wrapped nano-Si composite as a high performance anode material for Li-ion batteries. RSC Advances, 2011, 1, 958.	1.7	85
18	Hierarchical Sulfurâ€Based Cathode Materials with Long Cycle Life for Rechargeable Lithium Batteries. ChemSusChem, 2014, 7, 563-569.	3.6	82

Үи-Ѕні Не

#	Article	IF	CITATIONS
19	Synthesis and characterization of submicron-sized LiNi1/3Co1/3Mn1/3O2 by a simple self-propagating solid-state metathesis method. Journal of Power Sources, 2007, 163, 1053-1058.	4.0	81
20	Electrochemical Behavior of LiFePO[sub 4]â^•C Cathode Material for Rechargeable Lithium Batteries. Journal of the Electrochemical Society, 2005, 152, A1969.	1.3	79
21	Synthesis of LiNi1/3Co1/3Mn1/3O2â^'zFz cathode material from oxalate precursors for lithium ion battery. Journal of Fluorine Chemistry, 2007, 128, 139-143.	0.9	78
22	An experimental insight into the advantages of in situ solvothermal route to construct 3D graphene-based anode materials for lithium-ion batteries. Nano Energy, 2015, 16, 235-246.	8.2	69
23	A Novel Synthesis Route for LiFePO[sub 4]/C Cathode Materials for Lithium-Ion Batteries. Electrochemical and Solid-State Letters, 2004, 7, A522.	2.2	68
24	High voltage supercapacitors using hydrated graphene film in a neutral aqueous electrolyte. Electrochemistry Communications, 2011, 13, 1166-1169.	2.3	64
25	Superior high-rate cycling performance of LiFePO4/C-PPy composite at 55°C. Electrochemistry Communications, 2009, 11, 1277-1280.	2.3	62
26	Nitrogen and Phosphorus Codoped Porous Carbon Framework as Anode Material for High Rate Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 36969-36975.	4.0	58
27	A solvothermal strategy: one-step in situ synthesis of self-assembled 3D graphene-based composites with enhanced lithium storage capacity. Journal of Materials Chemistry A, 2014, 2, 9200-9207.	5.2	56
28	Improved cycling performance of prussian blue cathode for sodium ion batteries by controlling operation voltage range. Electrochimica Acta, 2017, 225, 235-242.	2.6	56
29	One-Pot Spray-Dried Graphene Sheets-Encapsulated Nano-Li ₄ Ti ₅ O ₁₂ Microspheres for a Hybrid BatCap System. Industrial & Engineering Chemistry Research, 2014, 53, 10849-10857.	1.8	55
30	A flexible and binder-free reduced graphene oxide/Na _{2/3} [Ni _{1/3} Mn _{2/3}]O ₂ composite electrode for high-performance sodium ion batteries. Journal of Materials Chemistry A, 2014, 2, 6723-6726.	5.2	52
31	Highly crystalline sodium manganese ferrocyanide microcubes for advanced sodium ion battery cathodes. Journal of Materials Chemistry A, 2019, 7, 22248-22256.	5.2	51
32	Rational Design of the Robust Janus Shell on Silicon Anodes for High-Performance Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 17375-17383.	4.0	49
33	Incorporation of rubidium cations into Li 1.2 Mn 0.54 Co 0.13 Ni 0.13 O 2 layered oxide cathodes for improved cycling stability. Electrochimica Acta, 2017, 231, 363-370.	2.6	45
34	Achieving highly reversible and fast sodium storage of Na4VMn(PO4)3/C-rGO composite with low-fraction rGO via spray-drying technique. Nano Energy, 2021, 89, 106462.	8.2	45
35	Direct scattered growth of MWNT on Si for high performance anode material in Li-ion batteries. Chemical Communications, 2010, 46, 9149.	2.2	44
36	MXene Frameworks Promote the Growth and Stability of LiF-Rich Solid–Electrolyte Interphases on Silicon Nanoparticle Bundles. ACS Applied Materials & Interfaces, 2020, 12, 18541-18550.	4.0	44

Yu-Shi He

#	Article	lF	CITATIONS
37	A dual-spatially-confined reservoir by packing micropores within dense graphene for long-life lithium/sulfur batteries. Nanoscale, 2016, 8, 2395-2402.	2.8	43
38	Structural Tuning of a Flexible and Porous Polypyrrole Film by a Template-Assisted Method for Enhanced Capacitance for Supercapacitor Applications. ACS Applied Materials & Interfaces, 2021, 13, 17726-17735.	4.0	43
39	Coaxial Carbon Nanotube Supported TiO ₂ @MoO ₂ @Carbon Core–Shell Anode for Ultrafast and High-Capacity Sodium Ion Storage. ACS Nano, 2019, 13, 671-680.	7.3	41
40	A novel graphene sheet-wrapped Co ₂ (OH) ₃ Cl composite as a long-life anode material for lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 16925-16930.	5.2	39
41	Carbon-coated FeP nanoparticles anchored on carbon nanotube networks as an anode for long-life sodium-ion storage. Chemical Communications, 2018, 54, 11348-11351.	2.2	35
42	A Na4Fe(CN)6/NaCl solid solution cathode material with an enhanced electrochemical performance for sodium ion batteries. Journal of Materials Chemistry A, 2013, 1, 13417.	5.2	31
43	Integrating in situ solvothermal approach synthesized nanostructured tin anchored on graphene sheets into film anodes for sodium-ion batteries. Electrochimica Acta, 2016, 196, 572-578.	2.6	28
44	Induction of Osteogenic Differentiation of Human Adipose-Derived Stem Cells by a Novel Self-Supporting Graphene Hydrogel Film and the Possible Underlying Mechanism. ACS Applied Materials & Interfaces, 2015, 7, 20245-20254.	4.0	27
45	Electrochemical Performance of NaFeFe(CN) ₆ Prepared by Solid Reaction for Sodium Ion Batteries. Journal of the Electrochemical Society, 2018, 165, A3910-A3917.	1.3	27
46	A nitrogen-containing carbon film derived from vapor phase polymerized polypyrrole as a fast charging/discharging capability anode for lithium-ion batteries. Chemical Communications, 2016, 52, 112-115.	2.2	25
47	Regulating adhesion of solid-electrolyte interphase to silicon via covalent bonding strategy towards high Coulombic-efficiency anodes. Nano Energy, 2021, 84, 105935.	8.2	24
48	Cobalt phosphide embedded in a graphene nanosheet network as a high-performance anode for Li-ion batteries. Dalton Transactions, 2019, 48, 7778-7785.	1.6	22
49	Improved Cycling Performance of P2-Na _{0.67} Ni _{0.33} Mn _{0.67} O ₂ Based on Sn Substitution Combined with Polypyrrole Coating. ACS Applied Materials & Interfaces, 2021, 13, 3793-3804.	4.0	22
50	Enhanced Electrochemical Performance of Nanofibrous CoO/CNF Cathode Catalyst for Li-O2 Batteries. Electrochimica Acta, 2014, 137, 183-189.	2.6	21
51	Constructing a catalytic reservoir using cobalt nanoparticles-MoS2@nitrogen doped carbon nanotubes on the separator to immobilize polysulfides and accelerate their conversion for lithium-sulfur batteries. Chemical Engineering Journal, 2022, 446, 136943.	6.6	21
52	Influence of lithium precursors and calcination atmospheres on graphene sheets-modified nano-Li4Ti5O12 anode material. Journal of Power Sources, 2015, 285, 51-62.	4.0	20
53	Effectively incorporating iron, nitrogen, and sulfur functionalities on carbon surface for a superior electrocatalyst toward oxygen reduction reaction. Electrochemistry Communications, 2017, 81, 34-37.	2.3	20
54	Synthesis and electrochemical characterization of LiFePO4/C-polypyrrole composite prepared by a simple chemical vapor deposition method. Journal of Solid State Electrochemistry, 2012, 16, 1383-1388.	1.2	19

Үи-Ѕні Не

#	Article	IF	CITATIONS
55	Boosting the Sodiation Capability and Stability of FeP by In Situ Anchoring on the Graphene Conductive Framework. ChemNanoMat, 2018, 4, 309-315.	1.5	19
56	Boosting potassium storage in nanosheet assembled MoSe2 hollow sphere through surface decoration of MoO2 nanoparticles. Applied Surface Science, 2020, 505, 144573.	3.1	19
57	Nanofibrous MnNi/CNF Composite Catalyst for Rechargeable Li/O2Cell. Journal of the Electrochemical Society, 2013, 160, A1112-A1117.	1.3	17
58	Revisiting the capacity-fading mechanism of P2-type sodium layered oxide cathode materials during high-voltage cycling. Journal of Energy Chemistry, 2022, 69, 16-25.	7.1	17
59	A novel Co(phen)2/C catalyst for the oxygen electrode in rechargeable lithium air batteries. Science Bulletin, 2012, 57, 1959-1963.	1.7	15
60	Structural and chemical interplay between nano-active and encapsulation materials in a core–shell SnO ₂ @MXene lithium ion anode system. CrystEngComm, 2021, 23, 368-377.	1.3	15
61	Dopants modulate crystal growth in molten salts enabled by surface energy tuning. Journal of Materials Chemistry A, 2021, 9, 19675-19680.	5.2	15
62	Spray-dried assembly of 3D N,P-Co-doped graphene microspheres embedded with core–shell CoP/MoP@C nanoparticles for enhanced lithium-ion storage. Dalton Transactions, 2021, 50, 4555-4566.	1.6	15
63	N-doped pierced graphene microparticles as a highly active electrocatalyst for Li-air batteries. 2D Materials, 2015, 2, 024002.	2.0	14
64	Urchin-like MoP Nanocrystals Embedded in N-Doped Carbon as High Rate Lithium Ion Battery Anode. ACS Applied Energy Materials, 2018, 1, 7140-7145.	2.5	14
65	Constructing a "pea-pod"-like nanostructure to provide valid conductive matrix and volume change accommodation for silicon anode in lithium ion batteries. Green Chemical Engineering, 2021, 2, 327-335.	3.3	14
66	Rechargeable Li/O ₂ Cell Based on a LiTFSI-DMMP/PFSA-Li Composite Electrolyte. Journal of the Electrochemical Society, 2012, 159, A1874-A1879.	1.3	13
67	Surface Tuning to Promote the Electrocatalysis for Oxygen Evolution Reaction: From Metal-Free to Cobalt-Based Carbon Electrocatalysts. ACS Applied Materials & amp; Interfaces, 2021, 13, 503-513.	4.0	13
68	Low-Cost Nickel Phosphide as an Efficient Bifunctional Cathode Catalyst for Li-O ₂ Batteries. Journal of the Electrochemical Society, 2018, 165, A2904-A2908.	1.3	11
69	Controlling Particle Size and Phase Purity of "Single-Crystal―LiNi0.5Mn1.5O4 in Molten-Salt-Assisted Synthesis. Journal of Physical Chemistry C, 2020, 124, 27937-27945.	1.5	11
70	Enhanced low-temperature performance of slight Mn-substituted LiFePO4/C cathode for lithium ion batteries. Science Bulletin, 2011, 56, 1262-1266.	1.7	10
71	Synergistic antibacterial effect of graphene-coated titanium loaded with levofloxacin. Colloids and Surfaces B: Biointerfaces, 2021, 208, 112090.	2.5	10
72	An Active Amorphous Carbon Material with Fe ₂ C Nanocrystals Encapsulated as a High Performance Electrode for Lithium-Ion Batteries. ChemistrySelect, 2017, 2, 1854-1859.	0.7	8

Үи-Ѕні Не

#	Article	IF	CITATIONS
73	A Porous and Interconnected Polypyrrole Film with High Conductivity and Ion Accessibility as Electrode for Flexible Allâ€Solidâ€State Supercapacitors. ChemElectroChem, 2019, 6, 5479-5485.	1.7	7
74	Rapid Hardâ€Tissueâ€Embedding Method for Embedding Graphene Nanomaterials: A Multilayered Graphene Hydrogel Membrane. Macromolecular Materials and Engineering, 2021, 306, .	1.7	3
75	Preparation and performance of LiNi0.8Co0.2O2 cathode material based on Co-substituted α-Ni(OH)2 precursor. Science Bulletin, 2008, 53, 1324-1328.	4.3	2
76	In Situ Growth of SnO ₂ on Graphene Nanosheets as Advanced Anode Materials for Rechargeable Lithium Batteries. ECS Transactions, 2010, 28, 151-156.	0.3	2
77	Series resistance method to obtain equivalent circuit of piezoelectric resonator. Electronics Letters, 2012, 48, 1054-1056.	0.5	1
78	Electrochemical Performances of Reduced Graphene Oxide/Titanium Dioxide Composites for Sodium-Ion Batteries. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2015, 31, 913-919.	2.2	1
79	Surficial charge state tuning of tungsten carbide for catalyzing alkaline hydrogen evolution reaction. International Journal of Hydrogen Energy, 2021, , .	3.8	1
80	Electrochemical Performance of Vanadium Modified LiFe _{0.5} Mn _{0.5} PO ₄ /C Cathode Materials for Lithium-Ion Batteries. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2012, 28, 100-104.	2.2	1
81	Influence of Calcination Temperature on Performances of Co-N/C Electrocatalysts for Li/O ₂ Cells. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2014, 30, 150-156.	2.2	0
82	Experimental insight into the structure-property relationship and lithium storage mechanism of hydroxyl chloride anchored in the 3D porous conductive matrix. Diamond and Related Materials, 2022, 125, 109020.	1.8	0