Zheng Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2380910/publications.pdf Version: 2024-02-01

ΖΗΕΝΟ ΖΗΛΝΟ

#	Article	IF	CITATIONS
1	Glycosyltransferase GT1 family: Phylogenetic distribution, substrates coverage, and representative structural features. Computational and Structural Biotechnology Journal, 2020, 18, 1383-1390.	4.1	59
2	Estimate of the sequenced proportion of the global prokaryotic genome. Microbiome, 2020, 8, 134.	11.1	58
3	Structural characterization and evolutionary analysis of fish-specific TLR27. Fish and Shellfish Immunology, 2015, 45, 940-945.	3.6	39
4	Bioinformatical Analysis of the Sequences, Structures and Functions of Fungal Polyketide Synthase Product Template Domains. Scientific Reports, 2015, 5, 10463.	3.3	38
5	Ectodomain Architecture Affects Sequence and Functional Evolution of Vertebrate Toll-like Receptors. Scientific Reports, 2016, 6, 26705.	3.3	37
6	Impact of Indels on the Flanking Regions in Structural Domains. Molecular Biology and Evolution, 2011, 28, 291-301.	8.9	35
7	TRPM7 promotes the metastatic process in human nasopharyngeal carcinoma. Cancer Letters, 2015, 356, 483-490.	7.2	31
8	Mechanisms Involved in the Functional Divergence of Duplicated GroEL Chaperonins in Myxococcus xanthus DK1622. PLoS Genetics, 2013, 9, e1003306.	3.5	27
9	The Combined Effects of Amino Acid Substitutions and Indels on the Evolution of Structure within Protein Families. PLoS ONE, 2010, 5, e14316.	2.5	25
10	A nucleaseâ€ŧoxin and immunity system for kin discrimination in <i>Myxococcus xanthus</i> . Environmental Microbiology, 2018, 20, 2552-2567.	3.8	20
11	Shifts in the Bacterial Population and Ecosystem Functions in Response to Vegetation in the Yellow River Delta Wetlands. MSystems, 2020, 5, .	3.8	19
12	Interleukin-22 ameliorates acute severe pancreatitis-associated lung injury in mice. World Journal of Gastroenterology, 2016, 22, 5023.	3.3	18
13	A Newly Determined Member of the <i>meso</i> -Diaminopimelate Dehydrogenase Family with a Broad Substrate Spectrum. Applied and Environmental Microbiology, 2017, 83, .	3.1	18
14	Structural and evolutionary characteristics of fish-specific TLR19. Fish and Shellfish Immunology, 2015, 47, 271-279.	3.6	16
15	Global Geographic Diversity and Distribution of the Myxobacteria. Microbiology Spectrum, 2021, 9, e0001221.	3.0	15
16	IndelFR: a database of indels in protein structures and their flanking regions. Nucleic Acids Research, 2012, 40, D512-D518.	14.5	14
17	Bioinformatics analysis of the structural and evolutionary characteristics for toll-like receptor 15. PeerJ, 2016, 4, e2079.	2.0	13
18	Effects of transcriptional mode on promoter substitution and tandem engineering for the production of epothilones in Myxococcus xanthus. Applied Microbiology and Biotechnology, 2018, 102, 5599-5610.	3.6	13

ZHENG ZHANG

#	Article	IF	CITATIONS
19	Structural and evolutionary characteristics of dynamin-related GTPase OPA1. PeerJ, 2019, 7, e7285.	2.0	13
20	Analysis of the Sequences, Structures, and Functions of Product-Releasing Enzyme Domains in Fungal Polyketide Synthases. Frontiers in Microbiology, 2017, 8, 1685.	3.5	12
21	Phylogenyâ€guided characterization of glycosyltransferases for epothilone glycosylation. Microbial Biotechnology, 2019, 12, 763-774.	4.2	12
22	Diagnostic Techniques for COVID-19: A Mini-review of Early Diagnostic Methods. Journal of Analysis and Testing, 2021, 5, 314-326.	5.1	12
23	Two PAAR Proteins with Different C-Terminal Extended Domains Have Distinct Ecological Functions in Myxococcus xanthus. Applied and Environmental Microbiology, 2021, 87, .	3.1	11
24	Error-prone DnaE2 Balances the Genome Mutation Rates in Myxococcus xanthus DK1622. Frontiers in Microbiology, 2017, 8, 122.	3.5	10
25	Myxococcus xanthus DK1622 Coordinates Expressions of the Duplicate groEL and Single groES Genes for Synergistic Functions of GroELs and GroES. Frontiers in Microbiology, 2017, 8, 733.	3.5	10
26	Competitive Interactions Between Incompatible Mutants of the Social Bacterium Myxococcus xanthus DK1622. Frontiers in Microbiology, 2018, 9, 1200.	3.5	10
27	Identification of type VI secretion system toxic effectors using adaptors as markers. Computational and Structural Biotechnology Journal, 2020, 18, 3723-3733.	4.1	10
28	PAAR Proteins Are Versatile Clips That Enrich the Antimicrobial Weapon Arsenals of Prokaryotes. MSystems, 2021, 6, e0095321.	3.8	10
29	A Post-segregational Killing Mechanism for Maintaining Plasmid PMF1 in Its Myxococcus fulvus Host. Frontiers in Cellular and Infection Microbiology, 2018, 8, 274.	3.9	9
30	Novel furimazine derivatives for nanoluciferase bioluminescence with various C-6 and C-8 substituents. Organic and Biomolecular Chemistry, 2021, 19, 7930-7936.	2.8	9
31	Expanded analyses of the functional correlations within structural classifications of glycoside hydrolases. Computational and Structural Biotechnology Journal, 2021, 19, 5931-5942.	4.1	9
32	A bacterial negative transcription regulator binding on an inverted repeat in the promoter for epothilone biosynthesis. Microbial Cell Factories, 2017, 16, 92.	4.0	8
33	Contributions of substitutions and indels to the structural variations in ancient protein superfamilies. BMC Genomics, 2018, 19, 771.	2.8	8
34	Docking-guided rational engineering of a macrolide glycosyltransferase glycodiversifies epothilone B. Communications Biology, 2022, 5, 100.	4.4	6
35	CIRCE element evolved for the coordinated transcriptional regulation of bacterial duplicate groELs. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2018, 1861, 928-937.	1.9	5
36	Bioinformatic and Functional Characterization of Hsp70s in Myxococcus xanthus. MSphere, 2021, 6, .	2.9	4

ZHENG ZHANG

#	Article	IF	CITATIONS
37	Insights into the persistence and phenotypic effects of the endogenous and cryptic plasmid pMF1 in its host strain Myxococcus fulvus 124B02. FEMS Microbiology Ecology, 2020, 96, .	2.7	3
38	The Second Chromosome Promotes the Adaptation of the Genus <i>Flammeovirga</i> to Complex Environments. Microbiology Spectrum, 2021, 9, e0098021.	3.0	3
39	Dynamic Interplay of theÂMyxobacterial Chaperonins. Heat Shock Proteins, 2017, , 53-65.	0.2	0