
Angel J Moreno

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2380672/publications.pdf Version: 2024-02-01

ANCEL MORENO

#	Article	IF	CITATIONS
1	Validity of Effective Potentials in Crowded Solutions of Linear and Ring Polymers with Reversible Bonds. Macromolecules, 2022, 55, 2659-2674.	2.2	3
2	Crowded solutions of single-chain nanoparticles under shear flow. Soft Matter, 2021, 17, 2223-2233.	1.2	2
3	Gel Formation in Reversibly Cross-Linking Polymers. Macromolecules, 2021, 54, 6613-6627.	2.2	7
4	Advances in the Multi-Orthogonal Folding of Single Polymer Chains into Single-Chain Nanoparticles. Polymers, 2021, 13, 293.	2.0	10
5	Coarsening Kinetics of Complex Macromolecular Architectures in Bad Solvent. Polymers, 2020, 12, 531.	2.0	4
6	Single-chain nanoparticles: opportunities provided by internal and external confinement. Materials Horizons, 2020, 7, 2292-2313.	6.4	72
7	Deformability and solvent penetration in soft nanoparticles at liquid-liquid interfaces. Journal of Colloid and Interface Science, 2020, 570, 212-222.	5.0	7
8	Mesoscale Dynamics in Melts of Single-Chain Polymeric Nanoparticles. Macromolecules, 2019, 52, 6935-6942.	2.2	17
9	Numerical modelling of non-ionic microgels: an overview. Soft Matter, 2019, 15, 1108-1119.	1.2	67
10	Effect of Molecular Crowding on Conformation and Interactions of Single-Chain Nanoparticles. Macromolecules, 2019, 52, 4295-4305.	2.2	16
11	Brushes of elastic single-chain nanoparticles on flat surfaces. Polymer, 2019, 169, 207-214.	1.8	6
12	Facile Access to Completely Deuterated Singleâ€Chain Nanoparticles Enabled by Intramolecular Azide Photodecomposition. Macromolecular Rapid Communications, 2019, 40, 1900046.	2.0	15
13	Single-Chain Nanoparticles under Homogeneous Shear Flow. Macromolecules, 2019, 52, 1821-1831.	2.2	13
14	Crowding the Environment of Single-Chain Nanoparticles: A Combined Study by SANS and Simulations. Macromolecules, 2018, 51, 1573-1585.	2.2	31
15	Effect of chain stiffness on the structure of single-chain polymer nanoparticles. Journal of Physics Condensed Matter, 2018, 30, 034001.	0.7	15
16	The Role of the Functionality in the Branch Point Motion in Symmetric Star Polymers: A Combined Study by Simulations and Neutron Spin Echo Spectroscopy. Macromolecules, 2018, 51, 242-253.	2.2	14
17	Computational investigation of microgels: synthesis and effect of the microstructure on the deswelling behavior. Soft Matter, 2018, 14, 7083-7096.	1.2	37
18	Local Domain Size in Single-Chain Polymer Nanoparticles. ACS Omega, 2018, 3, 8648-8654.	1.6	17

ANGEL J MORENO

#	Article	IF	CITATIONS
19	Ultrafiltration of single-chain polymer nanoparticles through nanopores and nanoslits. Polymer, 2018, 148, 61-67.	1.8	9
20	Folding Single Chains to Single-Chain Nanoparticles via Reversible Interactions: What Size Reduction Can One Expect?. Macromolecules, 2017, 50, 1732-1739.	2.2	49
21	The Role of the Topological Constraints in the Chain Dynamics in All-Polymer Nanocomposites. Macromolecules, 2017, 50, 1719-1731.	2.2	31
22	Size of Elastic Single-Chain Nanoparticles in Solution and on Surfaces. Macromolecules, 2017, 50, 6323-6331.	2.2	23
23	Effects of precursor topology and synthesis under crowding conditions on the structure of single-chain polymer nanoparticles. Soft Matter, 2017, 13, 6430-6438.	1.2	17
24	A Solventâ€Based Strategy for Tuning the Internal Structure of Metalloâ€Folded Singleâ€Chain Nanoparticles. Macromolecular Rapid Communications, 2016, 37, 1060-1065.	2.0	39
25	Anisotropic effective interactions and stack formation in mixtures of semiflexible ring polymers. Soft Matter, 2016, 12, 4805-4820.	1.2	28
26	Structure and dynamics of single-chain nano-particles in solution. Polymer, 2016, 105, 532-544.	1.8	44
27	Tunable slow dynamics in a new class of soft colloids. Soft Matter, 2016, 12, 9039-9046.	1.2	12
28	A Useful Methodology for Determining the Compaction Degree of Singleâ€Chain Nanoparticles by Conventional SEC. Particle and Particle Systems Characterization, 2016, 33, 373-381.	1.2	10
29	Role of Dynamic Asymmetry on the Collective Dynamics of Comblike Polymers: Insights from Neutron Spin-Echo Experiments and Coarse-Grained Molecular Dynamics Simulations. Macromolecules, 2016, 49, 4989-5000.	2.2	6
30	Concentrated Solutions of Single-Chain Nanoparticles: A Simple Model for Intrinsically Disordered Proteins under Crowding Conditions. Journal of Physical Chemistry Letters, 2016, 7, 838-844.	2.1	64
31	Proposed sets of critical exponents for randomly branched polymers, using a known string theory model. Phase Transitions, 2016, 89, 543-546.	0.6	1
32	An Anisotropic Effective Model for the Simulation of Semiflexible Ring Polymers. Macromolecules, 2015, 48, 4983-4997.	2.2	32
33	Simulation guided design of globular single-chain nanoparticles by tuning the solvent quality. Soft Matter, 2015, 11, 1369-1375.	1.2	58
34	Efficient Route to Compact Single-Chain Nanoparticles: Photoactivated Synthesis via Thiol–Yne Coupling Reaction. Macromolecules, 2014, 47, 8270-8280.	2.2	77
35	Branch-Point Motion in Architecturally Complex Polymers: Estimation of Hopping Parameters from Computer Simulations and Experiments. Macromolecules, 2014, 47, 3362-3377.	2.2	18
36	Multi-blob coarse graining for ring polymer solutions. Soft Matter, 2014, 10, 9601-9614.	1.2	38

ANGEL J MORENO

#	Article	IF	CITATIONS
37	Single-chain nanoparticles vs. star, hyperbranched and dendrimeric polymers: effect of the nanoscopic architecture on the flow properties of diluted solutions. Soft Matter, 2014, 10, 9454-9459.	1.2	13
38	Multi-orthogonal folding of single polymer chains into soft nanoparticles. Soft Matter, 2014, 10, 4813-4821.	1.2	43
39	Cluster Glasses of Semiflexible Ring Polymers. ACS Macro Letters, 2014, 3, 611-616.	2.3	45
40	How Far Are Single-Chain Polymer Nanoparticles in Solution from the Globular State?. ACS Macro Letters, 2014, 3, 767-772.	2.3	152
41	Real-Space Analysis of Branch Point Motion in Architecturally Complex Polymers. Macromolecules, 2014, 47, 6955-6963.	2.2	8
42	Endowing Single-Chain Polymer Nanoparticles with Enzyme-Mimetic Activity. ACS Macro Letters, 2013, 2, 775-779.	2.3	129
43	Architecture-Induced Size Asymmetry and Effective Interactions of Ring Polymers: Simulation and Theory. Macromolecules, 2013, 46, 9437-9445.	2.2	19
44	End-to-End Vector Dynamics of Nonentangled Polymers in Lamellar Block Copolymer Melts: The Role of Junction Point Motion. Macromolecules, 2013, 46, 7477-7487.	2.2	11
45	Fluids of semiflexible ring polymers: effective potentials and clustering. Soft Matter, 2013, 9, 1287-1300.	1.2	61
46	Advantages of Orthogonal Folding of Single Polymer Chains to Soft Nanoparticles. Macromolecules, 2013, 46, 9748-9759.	2.2	89
47	Effects of Knots on Ring Polymers in Solvents of Varying Quality. Macromolecules, 2013, 46, 3654-3668.	2.2	57
48	"Michael―Nanocarriers Mimicking Transient-Binding Disordered Proteins. ACS Macro Letters, 2013, 2, 491-495.	2.3	106
49	Dynamics of Branched Polymers: A Combined Study by Molecular Dynamics Simulations and Tube Theory. Macromolecules, 2013, 46, 4633-4650.	2.2	45
50	Dynamic Heterogeneity in Random and Gradient Copolymers: A Computational Investigation. Macromolecules, 2013, 46, 5066-5079.	2.2	32
51	Effective interactions of knotted ring polymers. Biochemical Society Transactions, 2013, 41, 630-634.	1.6	11
52	Design and Preparation of Single hain Nanocarriers Mimicking Disordered Proteins for Combined Delivery of Dermal Bioactive Cargos. Macromolecular Rapid Communications, 2013, 34, 1681-1686.	2.0	82
53	Cluster glasses of ultrasoft particles. Journal of Chemical Physics, 2012, 137, 184904.	1.2	23
54	Anomalous molecular weight dependence of chain dynamics in unentangled polymer blends with strong dynamic asymmetry. Soft Matter, 2012, 8, 3739.	1.2	20

Angel J Moreno

#	Article	IF	CITATIONS
55	Heterogeneity of the Segmental Dynamics in Cylindrical and Spherical Phases of Diblock Copolymers. Macromolecules, 2012, 45, 8841-8852.	2.2	15
56	Chain dynamics in nonentangled polymer melts: A first-principle approach for the role of intramolecular barriers. Soft Matter, 2011, 7, 1364.	1.2	9
57	From caging to Rouse dynamics in polymer melts with intramolecular barriers: A critical test of the mode coupling theory. Journal of Chemical Physics, 2011, 134, 024523.	1.2	16
58	Heterogeneity of the Segmental Dynamics in Lamellar Phases of Diblock Copolymers. Macromolecules, 2011, 44, 6952-6961.	2.2	34
59	Effect of Blending on the Chain Dynamics of the "Low- <i>T</i> _g ―Component in Nonentangled and Dynamically Asymmetric Polymer Blends. Macromolecules, 2011, 44, 3611-3621.	2.2	29
60	Structure and Dynamics of Self-Assembled Comb Copolymers: Comparison between Simulations of a Generic Model and Neutron Scattering Experiments. Macromolecules, 2011, 44, 1695-1706.	2.2	27
61	On the Apparent SEC Molecular Weight and Polydispersity Reduction upon Intramolecular Collapse of Polydisperse Chains to Unimolecular Nanoparticles. Macromolecules, 2011, 44, 8644-8649.	2.2	49
62	Static and dynamic contributions to anomalous chain dynamics in polymer blends. Journal of Physics Condensed Matter, 2011, 23, 234119.	0.7	3
63	Dynamics in binary cluster crystals. Journal of Statistical Mechanics: Theory and Experiment, 2010, 2010, P10015.	0.9	8
64	Chain Motion in Nonentangled Dynamically Asymmetric Polymer Blends: Comparison between Atomistic Simulations of PEO/PMMA and a Generic Beadâ^`Spring Model. Macromolecules, 2010, 43, 3036-3051.	2.2	44
65	Increasing the density melts ultrasoft colloidal glasses. Physical Review E, 2010, 82, 060501.	0.8	78
66	Influence of topology on effective potentials: coarse-graining ring polymers. Soft Matter, 2010, 6, 2435.	1.2	55
67	The role of intramolecular barriers on the glass transition of polymers: Computer simulations versus mode coupling theory. Journal of Chemical Physics, 2009, 131, 204502.	1.2	20
68	Soft Confinement in Spherical Mesophases of Block Copolymer Melts. Macromolecules, 2009, 42, 8543-8556.	2.2	4
69	Cluster crystals in confinement. Soft Matter, 2009, 5, 1024.	1.2	28
70	Cluster-forming systems of ultrasoft repulsive particles: statics and dynamics. Computer Physics Communications, 2008, 179, 71-76.	3.0	25
71	Entangledlike Chain Dynamics in Nonentangled Polymer Blends with Large Dynamic Asymmetry. Physical Review Letters, 2008, 100, 126001.	2.9	29
72	Dynamic Arrest in Polymer Melts: Competition between Packing and Intramolecular Barriers. Physical Review Letters, 2008, 101, 255701.	2.9	43

ANGEL J MORENO

#	Article	IF	CITATIONS
73	Tests of mode coupling theory in a simple model for two-component miscible polymer blends. Journal of Physics Condensed Matter, 2007, 19, 466112.	0.7	11
74	Anomalous relaxation in binary mixtures: a dynamic facilitation picture. Journal of Physics Condensed Matter, 2007, 19, 205144.	0.7	1
75	Atomic motions in the αβ-region of glass-forming polymers: molecular versus mode coupling theory approach. Journal of Physics Condensed Matter, 2007, 19, 205127.	0.7	14
76	Diffusion and Relaxation Dynamics in Cluster Crystals. Physical Review Letters, 2007, 99, 107801.	2.9	63
77	Gel to glass transition in simulation of a valence-limited colloidal system. Journal of Chemical Physics, 2006, 124, 124908.	1.2	85
78	Non-Gaussian energy landscape of a simple model for strong network-forming liquids: Accurate evaluation of the configurational entropy. Journal of Chemical Physics, 2006, 124, 204509.	1.2	24
79	Mode-coupling theory predictions for a limited valency attractive square well model. Journal of Physics Condensed Matter, 2006, 18, S2373-S2382.	0.7	9
80	Logarithmic relaxation in a kinetically constrained model. Journal of Chemical Physics, 2006, 125, 016101.	1.2	13
81	Relaxation scenarios in a mixture of large and small spheres: Dependence on the size disparity. Journal of Chemical Physics, 2006, 125, 164507.	1.2	91
82	Anomalous dynamic arrest in a mixture of large and small particles. Physical Review E, 2006, 74, 021409.	0.8	90
83	Is there a higher-order mode coupling transition in polymer blends?. Journal of Chemical Physics, 2006, 124, 184906.	1.2	46
84	Neutron scattering investigations on methyl group dynamics in polymers. Progress in Polymer Science, 2005, 30, 1147-1184.	11.8	75
85	Energy Landscape of a Simple Model for Strong Liquids. Physical Review Letters, 2005, 95, 157802.	2.9	45
86	Routes to colloidal gel formation. Computer Physics Communications, 2005, 169, 166-171.	3.0	52
87	Dynamic arrest in a liquid of symmetric dumbbells: Reorientational hopping for small molecular elongations. Journal of Chemical Physics, 2005, 123, 204505.	1.2	34
88	Model for Reversible Colloidal Gelation. Physical Review Letters, 2005, 94, 218301.	2.9	143
89	Evidence for the Weak Steric Hindrance Scenario in the Supercooled-State Reorientational Dynamics. Physical Review Letters, 2005, 94, 215701.	2.9	54
90	Inelastic neutron scattering for investigating the dynamics of confined glass-forming liquids. Journal of Non-Crystalline Solids, 2005, 351, 2657-2667.	1.5	51

Angel J Moreno

#	Article	IF	CITATIONS
91	Dynamics of a rigid rod in a glassy medium. Europhysics Letters, 2004, 67, 820-826.	0.7	16
92	Relaxation dynamics of a linear molecule in a random static medium: A scaling analysis. Journal of Chemical Physics, 2004, 121, 380.	1.2	13
93	Dynamics of a rod in a homogeneous/inhomogeneous frozen disordered medium: Correlation functions and non-Gaussian effects. AIP Conference Proceedings, 2004, , .	0.3	2
94	Dynamics of a rod in a random static environment: non-Gaussian behaviour on large length scales. Philosophical Magazine, 2004, 84, 1383-1388.	0.7	3
95	Methyl group dynamics in a confined glass. European Physical Journal E, 2003, 12, 43-46.	0.7	10
96	Methyl-group dynamics from tunneling to hopping inNaCH3CO2â‹3H2O:Comparison between a crystal and its glassy counterpart. Physical Review B, 2002, 65, .	1.1	10
97	Methyl group dynamics in a glass and its crystalline counterpart by neutron scattering. Applied Physics A: Materials Science and Processing, 2002, 74, s424-s426.	1.1	2
98	The rotational barrier for methyl group dynamics in anhydrous sodium acetate. Applied Physics A: Materials Science and Processing, 2002, 74, s1351-s1353.	1.1	0
99	The distribution of tunnelling frequencies for methyl group rotation in poly(vinyl acetate). Journal of Non-Crystalline Solids, 2001, 287, 242-245.	1.5	4
100	Methyl Group Dynamics in Poly(methyl methacrylate):  From Quantum Tunneling to Classical Hopping. Macromolecules, 2001, 34, 4886-4896.	2.2	33
101	Methyl group dynamics in glassy toluene: A neutron scattering study. Journal of Chemical Physics, 2001, 115, 8958-8966.	1.2	20
102	Methyl group dynamics in glassy systems: Crossover from quantum to classical regime. Physical Review B, 2001, 63, .	1.1	10
103	Methyl group dynamics in glassy polymers by neutron scattering: from classical to quantum motions. Physica B: Condensed Matter, 2000, 276-278, 322-325.	1.3	7
104	Methyl group rotational tunnelling in glasses: a direct comparison with the crystal. Physica B: Condensed Matter, 2000, 276-278, 361-362.	1.3	11
105	Isotope effect on the rotational tunneling transitions of methyl groups in glassy polymers. Physical Review B, 1999, 59, 5983-5986.	1.1	27