Li Xiaokai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2380218/publications.pdf

Version: 2024-02-01

567281 580821 25 28 598 15 citations h-index g-index papers 28 28 28 906 citing authors all docs docs citations times ranked

#	Article	IF	Citations
1	Heatâ€driven Tailored for Eliminating Nd 3+ Reâ€clusters in Nd 3+ ,Gd 3+ â€codoped SrF 2 Laser Ceramic. Journal of the American Ceramic Society, 2020, 103, 2562-2568.	3.8	7
2	Er ³⁺ â€doped CaF ₂ polycrystalline ceramic with perfect transparency for midâ€infrared laser. Journal of the American Ceramic Society, 2020, 103, 5808-5812.	3.8	5
3	Optical and thermal properties of TiO ₂ â€doped Y ₂ O ₃ transparent ceramics synthesized by hot isostatic pressing. Journal of the American Ceramic Society, 2019, 102, 2021-2028.	3.8	14
4	Transparent Nd,Y-Codoped Ca1-xSrxF2 glass-ceramic with large emission bandwidth tailored by a controllable spontaneous precipitation under supersaturated state. Ceramics International, 2019, 45, 24651-24655.	4.8	5
5	Fabrication of Ce-doped (Gd2Y)Al5O12/Y3Al5O12 composite-phase scintillation ceramic. Journal of Rare Earths, 2019, 37, 978-983.	4.8	14
6	Femtosecond laser-induced damage characteristics of mid-infrared oxyfluorogallate glass. Optics and Laser Technology, 2019, 109, 659-665.	4.6	12
7	Efficient improvement of 2.7Âμm luminescence of Er3+:oxyfluoride glass containing gallium by Yb3+ ions codoping. Journal of Rare Earths, 2019, 37, 487-491.	4.8	19
8	Effects of deformation rate on properties of Nd,Y-codoped CaF 2 transparent ceramics. Journal of the European Ceramic Society, 2018, 38, 2404-2409.	5.7	22
9	Highly Er3+ doped fluorotellurite glass for 1.5†µm broadband amplification and 2.7†µm microchip laser applications. Journal of Luminescence, 2018, 202, 132-135.	3.1	30
10	Strong coupling between Tamm plasmon polariton and two dimensional semiconductor excitons. Applied Physics Letters, 2017, 110 , .	3.3	51
11	Fabrication of Ce:(Gd 2 Y)(Ga 3 Al 2)O 12 scintillator ceramic by oxygen-atmosphere sintering and hot isostatic pressing. Journal of the European Ceramic Society, 2017, 37, 3411-3415.	5.7	10
12	Perfectly transparent pore-free Nd3+-doped Sr9GdF21 polycrystalline ceramics elaborated from single-crystal ceramization. Journal of the European Ceramic Society, 2017, 37, 4912-4918.	5.7	13
13	Ultraviolet lasing behavior in ZnO optical microcavities. Journal of Materiomics, 2017, 3, 255-266.	5.7	43
14	Re-clustering of neodymium ions in neodymium, buffer ion-codoped alkaline-earth fluoride transparent ceramics. CrystEngComm, 2017, 19, 4480-4484.	2.6	4
15	Transparent Nd-doped Ca1â^'xYxF2+x ceramics prepared by the ceramization of single crystals. Materials and Design, 2017, 113, 326-330.	7.0	20
16	Optical absorption and mechanism of vacuum-sintered ZrO2-doped Y2O3 ceramics. Journal of the European Ceramic Society, 2016, 36, 4181-4184.	5.7	26
17	Europium doped transparent glass ceramics containing CaF ₂ micron-sized crystals: structural and optical characterization. RSC Advances, 2016, 6, 55366-55373.	3.6	15
18	Fabrication of transparent La-doped Y2O3 ceramics using different La2O3 precursors. Journal of the European Ceramic Society, 2016, 36, 2549-2553.	5.7	26

#	Article	IF	CITATION
19	Er 3+ -doped oxyfluorogallate glass for 2.7 Âμm solid-state lasers. Journal of Luminescence, 2016, 172, 331-334.	3.1	18
20	Polarization-coupled polariton pairs in a birefringent microcavity. Physical Review B, 2015, 91, .	3.2	10
21	Cracks in transparent La-doped yttria ceramics and the formation mechanism. Journal of the European Ceramic Society, 2015, 35, 3137-3143.	5.7	16
22	Weak lasing in one-dimensional polariton superlattices. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1516-9.	7.1	49
23	Polariton lasing in a ZnO microwire above 450 K. Applied Physics Letters, 2014, 104, .	3.3	32
24	The effect of La2O3 in Tm3+-doped germanate-tellurite glasses for ~2â€Î⅓m emission. Scientific Reports, 2014, 4, 5256.	3.3	43
25	Use of distributed Bragg reflectors to enhance Fabry–Pérot lasing in vertically aligned ZnO nanowires. Applied Physics A: Materials Science and Processing, 2013, 110, 23-28.	2.3	12
26	Polariton lasing of quasi-whispering gallery modes in a ZnO microwire. Applied Physics Letters, 2013, 103, .	3.3	36
27	Thermodynamic-effect-induced growth, optical modulation and UV lasing of hierarchical ZnO Fabry–Pérot resonators. Journal of Materials Chemistry, 2012, 22, 3069.	6.7	11
28	Intense photoluminescence at 27 μm in transparent Er^3+:CaF_2-fluorophosphate glass microcomposite. Ontics Letters, 2011, 36, 4347.	3.3	35