Haibo Jia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2379394/publications.pdf

Version: 2024-02-01

257450 149698 3,377 72 24 56 citations h-index g-index papers 81 81 81 2859 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The protective effect of quercetin on macrophage pyroptosis via TLR2/Myd88/NF-κB and ROS/AMPK pathway. Life Sciences, 2022, 291, 120064.	4.3	43
2	Comprehensive Assessment of Coronary Calcification in Intravascular OCT Using a Spatial-Temporal Encoder-Decoder Network. IEEE Transactions on Medical Imaging, 2022, 41, 857-868.	8.9	11
3	Fibroblast growth factor-21 as a novel metabolic factor for regulating thrombotic homeostasis. Scientific Reports, 2022, 12, 400.	3.3	5
4	The Effect of Blood Pressure Variability on Coronary Atherosclerosis Plaques. Frontiers in Cardiovascular Medicine, 2022, 9, 803810.	2.4	14
5	Feasibility and Safety of Very-Low Contrast Combined Ringer's Solution in Optical Coherence Tomography Imaging. Frontiers in Cardiovascular Medicine, 2022, 9, 844114.	2.4	3
6	TNF- $\hat{l}\pm$ is a Novel Biomarker for Predicting Plaque Rupture in Patients with ST-Segment Elevation Myocardial Infarction. Journal of Inflammation Research, 2022, Volume 15, 1889-1898.	3. 5	7
7	Impact of nodular calcification in patients with acute coronary syndrome (ACS) treated with primary percutaneous coronary intervention (PCI). BMC Cardiovascular Disorders, 2022, 22, 103.	1.7	3
8	EROSION III. JACC: Cardiovascular Interventions, 2022, 15, 846-856.	2.9	25
9	Prevalence and prognostic significance of DNMT3A- and TET2- clonal haematopoiesis-driver mutations in patients presenting with ST-segment elevation myocardial infarction. EBioMedicine, 2022, 78, 103964.	6.1	30
10	Risk Stratification in Acute Coronary Syndrome by Comprehensive Morphofunctional Assessment With Optical Coherence Tomography. JACC Asia, 2022, 2, 460-472.	1.5	9
11	Pancoronary Plaque Characteristics in STEMI Caused by Culprit Plaque Erosion Versus Rupture. JACC: Cardiovascular Imaging, 2021, 14, 1235-1245.	5.3	29
12	Association of the age shock index with coronary plaque characteristics in <scp>ST</scp> â€segment elevation myocardial infarction: A 3â€vessel optical coherence tomography study. Catheterization and Cardiovascular Interventions, 2021, 97, 1080-1088.	1.7	1
13	Is the effect of atorvastatin 60 mg on stabilization of lipidâ€rich plaque equivalent to that of rosuvastatin 10 mg? A serial optical coherence tomography combined with intravascular ultrasound imaging. Catheterization and Cardiovascular Interventions, 2021, 97, 1097-1107.	1.7	O
14	Artificial intelligence and optical coherence tomography for the automatic characterisation of human atherosclerotic plaques. EuroIntervention, 2021, 17, 41-50.	3.2	55
15	Optical Coherence Tomography-Based Patient-Specific Residual Multi-Thrombus Coronary Plaque Models With Fluid–Structure Interaction for Better Treatment Decisions: A Biomechanical Modeling Case Study. Journal of Biomechanical Engineering, 2021, 143, .	1.3	2
16	Predictors of non-stenting strategy for acute coronary syndrome caused by plaque erosion: four-year outcomes of the EROSION study. EuroIntervention, 2021, 17, 497-505.	3.2	27
17	Optical coherence tomography and tailored treatment of in-stent restenosis. EuroIntervention, 2021, 17, e399-e400.	3.2	0
18	Focal Geometry and Characteristics of Erosion-Prone Coronary Plaques in vivo Angiography and Optical Coherence Tomography Study. Frontiers in Cardiovascular Medicine, 2021, 8, 709480.	2.4	6

#	Article	IF	CITATIONS
19	Plaque Erosion: A Distinctive Pathological Mechanism of Acute Coronary Syndrome. Frontiers in Cardiovascular Medicine, 2021, 8, 711453.	2.4	13
20	Ferroptosis: A Potential Target in Cardiovascular Disease. Frontiers in Cell and Developmental Biology, 2021, 9, 813668.	3.7	20
21	Artificial Intelligenceâ€"A Good Assistant to Multi-Modality Imaging in Managing Acute Coronary Syndrome. Frontiers in Cardiovascular Medicine, 2021, 8, 782971.	2.4	3
22	Knockout of tnnilb in zebrafish causes defects in atrioventricular valve development via the inhibition of the myocardial wnt signaling pathway. FASEB Journal, 2019, 33, 696-710.	0.5	12
23	Classification of Culprit Ruptured Plaque Morphologies in Patients With STEMI. JACC: Cardiovascular Imaging, 2019, 12, 2077-2079.	5. 3	4
24	High Levels of Circulating MicroRNA-3667-3p Are Associated with Coronary Plaque Erosion in Patients with ST-Segment Elevation Myocardial Infarction. International Heart Journal, 2019, 60, 1061-1069.	1.0	8
25	Clinical use of intracoronary imaging. Part 2: acute coronary syndromes, ambiguous coronary angiography findings, and guiding interventional decision-making: an expert consensus document of the European Association of Percutaneous Cardiovascular Interventions. European Heart Journal, 2019, 40, 2566-2584.	2.2	189
26	Characteristics and significance of healed plaques in patients with acute coronary syndrome and stable angina: an in vivo OCT and IVUS study. EuroIntervention, 2019, 15, e771-e778.	3.2	29
27	Impact of vessel curvature on neointimal healing after stent implantation as assessed by optical coherence tomography. Medicine (United States), 2018, 97, e0518.	1.0	2
28	Optical Coherence Tomography Guidance in Management of Acute Coronary Syndrome Caused by Plaque Erosion. Circulation Journal, 2018, 82, 302-308.	1.6	19
29	Does spotty calcification attenuate the response of nonculprit plaque to statin therapy?: A serial optical coherence tomography study. Catheterization and Cardiovascular Interventions, 2018, 91, 582-590.	1.7	6
30	In vivo predictors of plaque erosion in patients with ST-segment elevation myocardial infarction: a clinical, angiographical, and intravascular optical coherence tomography study. European Heart Journal, 2018, 39, 2077-2085.	2.2	123
31	Clinical use of intracoronary imaging. Part 1: guidance and optimization of coronary interventions. An expert consensus document of the European Association of Percutaneous Cardiovascular Interventions. European Heart Journal, 2018, 39, 3281-3300.	2.2	431
32	Non-culprit plaque characteristics in acute coronary syndrome patients with raised hemoglobinA1c: an intravascular optical coherence tomography study. Cardiovascular Diabetology, 2018, 17, 90.	6.8	20
33	Clinical use of intracoronary imaging. Part 1: guidance and optimization of coronary interventions. An expert consensus document of the European Association of Percutaneous Cardiovascular Interventions. EuroIntervention, 2018, 14, 656-677.	3.2	92
34	Effective anti-thrombotic therapy without stenting: intravascular optical coherence tomography-based management in plaque erosion (the EROSION study). European Heart Journal, 2017, 38, ehw381.	2.2	214
35	Management and Outcome of Patients With Acute Coronary Syndrome Caused by Plaque Rupture Versus Plaque Erosion: AnÂlntravascular Optical Coherence Tomography Study. Journal of the American Heart Association, 2017, 6, .	3.7	51
36	Chronic kidney disease predicts coronary plaque vulnerability. Coronary Artery Disease, 2017, 28, 135-144.	0.7	9

#	Article	IF	CITATIONS
37	Plaque erosion delays vascular healing after drug eluting stent implantation in patients with acute coronary syndrome. Catheterization and Cardiovascular Interventions, 2017, 89, 592-600.	1.7	26
38	Role of Optical Coherence Tomography in Diagnosis and Treatment of Patients with Acute Coronary Syndrome. Cardiovascular Innovations and Applications, 2017, 2, .	0.3	0
39	Is age an important factor for vascular response to statin therapy? A serial optical coherence tomography and intravascular ultrasound study. Coronary Artery Disease, 2017, 28, 209-217.	0.7	8
40	EROSION Study (Effective Anti-Thrombotic Therapy Without Stenting: Intravascular Optical Coherence) Tj ETQq0	0 0 rgBT / 3.9	Overlock 10 113
41	Impact of statins therapy on morphological changes in lipid-rich plaques stratified by 10-Year framingham risk score: A serial optical coherence tomography study. Oncotarget, 2017, 8, 27401-27411.	1.8	2
42	Changes in coronary plaque morphology in patients with acute coronary syndrome versus stable angina pectoris after initiation of statin therapy. Coronary Artery Disease, 2016, 27, 629-635.	0.7	7
43	Serial Optical Coherence Tomography and Intravascular Ultrasound Analysis of Gender Difference in Changes of Plaque Phenotype in Response to Lipid-Lowering Therapy. American Journal of Cardiology, 2016, 117, 1890-1895.	1.6	5
44	Three-dimensional morphological response of lipid-rich coronary plaques to statin therapy. Coronary Artery Disease, 2016, 27, 350-356.	0.7	9
45	Patterns of coronary plaque progression. Coronary Artery Disease, 2016, 27, 658-666.	0.7	20
46	Comparison of Intensive Versus Moderate Lipid-Lowering Therapy on Fibrous Cap and Atheroma Volume of Coronary Lipid-Rich Plaque Using Serial Optical Coherence Tomography and Intravascular Ultrasound Imaging. American Journal of Cardiology, 2016, 117, 800-806.	1.6	73
47	Bivalirudin versus unfractionated heparin for residual thrombus burden: A frequencyâ€domain optical coherence tomography study. Catheterization and Cardiovascular Interventions, 2015, 85, 575-582.	1.7	5
48	Impacts of lesion angle on incidence and distribution of acute vessel wall injuries and strut malapposition after drug-eluting stent implantation assessed by optical coherence tomography. European Heart Journal Cardiovascular Imaging, 2015, 16, 1390-1398.	1.2	5
49	Optical Coherence Tomographic Evaluation of the Effect of Cigarette Smoking on Vascular Healing After Sirolimus-Eluting Stent Implantation. American Journal of Cardiology, 2015, 115, 751-757.	1.6	5
50	Insights into the spatial distribution of lipid-rich plaques in relation to coronary artery bifurcations. Coronary Artery Disease, 2015, 26, 133-141.	0.7	14
51	Computer-Aided Image Analysis Algorithm to Enhance In Vivo Diagnosis of Plaque Erosion by Intravascular Optical Coherence Tomography. Circulation: Cardiovascular Imaging, 2014, 7, 805-810.	2.6	12
52	Nonangiographic assessment of coronary artery disease. Coronary Artery Disease, 2014, 25, 608-618.	0.7	3
53	Residual Thrombus PatternÂinÂPatients With ST-Segment Elevation Myocardial Infarction Caused by Plaque Erosion Versus Plaque Rupture After Successful Fibrinolysis. Journal of the American College of Cardiology, 2014, 63, 1336-1338.	2.8	44
54	Pancoronary plaque vulnerability in patients with acute coronary syndrome and ruptured culprit plaque: A 3-vessel optical coherence tomography study. American Heart Journal, 2014, 167, 59-67.	2.7	74

#	Article	IF	CITATIONS
55	Distinct Morphological Features of RupturedÂCulprit Plaque for Acute Coronary Events Compared to Those With Silent RuptureÂand Thin-Cap Fibroatheroma. Journal of the American College of Cardiology, 2014, 63, 2209-2216.	2.8	179
56	Plaque Erosion. JACC: Cardiovascular Interventions, 2014, 7, e63-e64.	2.9	6
57	Comparison by Optical Coherence Tomography of the Frequency of Lipid Coronary Plaques in Current Smokers, Former Smokers, and Nonsmokers. American Journal of Cardiology, 2014, 114, 674-680.	1.6	27
58	Prevalence and Characteristics ofÂTCFA and Degree of Coronary Artery Stenosis. Journal of the American College of Cardiology, 2014, 64, 672-680.	2.8	131
59	Morphologic characteristics of eroded coronary plaques: a combined angiographic, optical coherence tomography, and intravascular ultrasound study. International Journal of Cardiology, 2014, 176, e137-e139.	1.7	9
60	Spatial heterogeneity of neoatherosclerosis and its relationship with neovascularization and adjacent plaque characteristics: Optical coherence tomography study. American Heart Journal, 2014, 167, 884-892.e2.	2.7	24
61	Interpretation of optical coherence tomography images. Lancet, The, 2014, 383, 1887.	13.7	0
62	Evaluation of culprit lesions by optical coherence tomography in patients with ST-elevation myocardial infarction. International Journal of Cardiology, 2013, 168, 1592-1593.	1.7	6
63	InÂVivo Diagnosis of Plaque Erosion and Calcified Nodule in Patients With Acute Coronary Syndrome by Intravascular Optical Coherence Tomography. Journal of the American College of Cardiology, 2013, 62, 1748-1758.	2.8	648
64	Correlation Between Degree of Neointimal Hyperplasia and Incidence and Characteristics of Neoatherosclerosis as Assessed by Optical Coherence Tomography. American Journal of Cardiology, 2013, 112, 1315-1321.	1.6	41
65	Ticagrelor immediately prior to stenting is associated with smaller residual thrombus in patients with acute coronary syndrome. International Journal of Cardiology, 2013, 168, 3099-3101.	1.7	9
66	Nonculprit Coronary Plaque Characteristics of Chronic Kidney Disease. Circulation: Cardiovascular Imaging, 2013, 6, 448-456.	2.6	69
67	Neointimal tissue characteristics following sirolimus-eluting stent implantation: OCT quantitative tissue property analysis. International Journal of Cardiovascular Imaging, 2012, 28, 1879-1886.	1.5	19
68	OCT Assessment of Allograft Vasculopathy in Heart Transplant Recipients. JACC: Cardiovascular Imaging, 2012, 5, 662-663.	5.3	48
69	Predictors for Neoatherosclerosis. Circulation: Cardiovascular Imaging, 2012, 5, 660-666.	2.6	143
70	Inhibition of MicroRNA <i>let-7i</i> Depresses Maturation and Functional State of Dendritic Cells in Response to Lipopolysaccharide Stimulation via Targeting Suppressor of Cytokine Signaling 1. Journal of Immunology, 2011, 187, 1674-1683.	0.8	74
71	In Vivo Detection of Plaque Erosion by Intravascular Optical Coherence Tomography Using Artificial Intelligence. Biomedical Optics Express, 0, , .	2.9	4
72	Automatic assessment of calcified plaque and nodule by optical coherence tomography adopting deep learning model. International Journal of Cardiovascular Imaging, 0, , .	0.6	0