MarÃ-a Hernández-Sánchez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2379333/publications.pdf

Version: 2024-02-01

46 papers

851 citations

567281 15 h-index 27 g-index

47 all docs

47 docs citations

47 times ranked

1698 citing authors

#	Article	lF	CITATIONS
1	Mitochondrial Reprogramming Underlies Resistance to BCL-2 Inhibition in Lymphoid Malignancies. Cancer Cell, 2019, 36, 369-384.e13.	16.8	224
2	Prognostic impact and landscape of NOTCH1 mutations in chronic lymphocytic leukemia (CLL): a study on 852 patients. Leukemia, 2013, 27, 2393-2396.	7.2	65
3	Patients with chronic lymphocytic leukemia and complex karyotype show an adverse outcome even in absence of <i>TP53/ATM FISH</i> deletions. Oncotarget, 2017, 8, 54297-54303.	1.8	44
4	Next-generation sequencing and FISH studies reveal the appearance of gene mutations and chromosomal abnormalities in hematopoietic progenitors in chronic lymphocytic leukemia. Journal of Hematology and Oncology, 2017, 10, 83.	17.0	38
5	Molecular Characterization of Chronic Lymphocytic Leukemia Patients with a High Number of Losses in 13q14. PLoS ONE, 2012, 7, e48485.	2.5	37
6	Mutations in TP53 and JAK2 are independent prognostic biomarkers in B-cell precursor acute lymphoblastic leukaemia. British Journal of Cancer, 2017, 117, 256-265.	6.4	34
7	The CRISPR/Cas9 system efficiently reverts the tumorigenic ability of <i>BCR/ABL in vitro</i> and in a xenograft model of chronic myeloid leukemia. Oncotarget, 2017, 8, 26027-26040.	1.8	30
8	A high proportion of cells carrying trisomy 12 is associated with a worse outcome in patients with chronic lymphocytic leukemia. Hematological Oncology, 2016, 34, 84-92.	1.7	26
9	Next-generation sequencing in chronic lymphocytic leukemia: recent findings and new horizons. Oncotarget, 2017, 8, 71234-71248.	1.8	25
10	A Low Frequency of Losses in 11q Chromosome Is Associated with Better Outcome and Lower Rate of Genomic Mutations in Patients with Chronic Lymphocytic Leukemia. PLoS ONE, 2015, 10, e0143073.	2.5	24
11	High throughput single-cell detection of multiplex CRISPR-edited gene modifications. Genome Biology, 2020, 21, 266.	8.8	23
12	CRISPR/Cas9-generated models uncover therapeutic vulnerabilities of del(11q) CLL cells to dual BCR and PARP inhibition. Leukemia, 2020, 34, 1599-1612.	7.2	21
13	The presence of genomic imbalances is associated with poor outcome in patients with burkitt lymphoma treated with doseâ€intensive chemotherapy including rituximab. British Journal of Haematology, 2016, 172, 428-438.	2.5	20
14	Chronic lymphocytic leukemia patients with <scp><i>IGH</i></scp> translocations are characterized by a distinct genetic landscape with prognostic implications. International Journal of Cancer, 2020, 147, 2780-2792.	5.1	19
15	The International Prognostic Index for Patients with Chronic Lymphocytic Leukemia Has the Higher Value in Predicting Overall Outcome Compared with the Barcelona-Brno Biomarkers Only Prognostic Model and the MD Anderson Cancer Center Prognostic Index. BioMed Research International, 2018, 2018. 1-8.	1.9	18
16	CRISPR/Cas9-Generated Models Uncover Therapeutic Vulnerabilities of Del(11q) Chronic Lymphocytic Leukemia Cells to Dual BCR and PARP Inhibition. Blood, 2018, 132, 948-948.	1.4	17
17	MicroRNA-223 is a novel negative regulator of HSP90B1 in CLL. BMC Cancer, 2015, 15, 238.	2.6	16
18	CLL cells cumulate genetic aberrations prior to the first therapy even in outwardly inactive disease phase. Leukemia, 2019, 33, 518-558.	7.2	15

#	Article	IF	Citations
19	The Evolving Landscape of Chronic Lymphocytic Leukemia on Diagnosis, Prognosis and Treatment. Diagnostics, 2021, 11, 853.	2.6	15
20	Mutation Status and Immunoglobulin Gene Rearrangements in Patients from Northwest and Central Region of Spain with Chronic Lymphocytic Leukemia. BioMed Research International, 2014, 2014, 1-8.	1.9	14
21	<i>TET2</i> Overexpression in Chronic Lymphocytic Leukemia Is Unrelated to the Presence of <i>TET2</i> Variations. BioMed Research International, 2014, 2014, 1-6.	1.9	12
22	Biological significance of monoallelic and biallelic BIRC3 loss in del(11q) chronic lymphocytic leukemia progression. Blood Cancer Journal, 2021, 11, 127.	6.2	12
23	Prognosis Assessment of Early-Stage Chronic Lymphocytic Leukemia: Are We Ready to Predict Clinical Evolution Without a Crystal Ball?. Clinical Lymphoma, Myeloma and Leukemia, 2020, 20, 548-555.e4.	0.4	10
24	From Biomarkers to Models in the Changing Landscape of Chronic Lymphocytic Leukemia: Evolve or Become Extinct. Cancers, 2021, 13, 1782.	3.7	10
25	DNA damage response-related alterations define the genetic background of patients with chronic lymphocytic leukemia and chromosomal gains. Experimental Hematology, 2019, 72, 9-13.	0.4	9
26	MiRNA expression profile of chronic lymphocytic leukemia patients with 13q deletion. Leukemia Research, 2016, 46, 30-36.	0.8	8
27	Characterizing patients with multiple chromosomal aberrations detected by FISH in chronic lymphocytic leukemia. Leukemia and Lymphoma, 2018, 59, 633-642.	1.3	8
28	A rare but recurrent t(8;13)(q24;q14) translocation in Bâ€cell chronic lymphocytic leukaemia causing <i><scp>MYC</scp></i> upâ€regulation and concomitant loss of <i><scp>PVT</scp>1</i> , <i> miRâ€15/16</i> and <i><scp>DLEU</scp>7</i> . British Journal of Haematology, 2016, 172, 296-299.	2.5	7
29	Dissecting the role of <i>TP53</i> alterations in del($11q$) chronic lymphocytic leukemia. Clinical and Translational Medicine, 2021, 11 , e304.	4.0	7
30	Chronic lymphocytic leukemia with isochromosome 17q: An aggressive subgroup associated with TP53 mutations and complex karyotypes. Cancer Letters, 2017, 409, 42-48.	7.2	6
31	Integrated Genomic Analysis of Chromosomal Alterations and Mutations in B-Cell Acute Lymphoblastic Leukemia Reveals Distinct Genetic Profiles at Relapse. Diagnostics, 2020, 10, 455.	2.6	6
32	A two-step approach for sequencing spliceosome-related genes as a complementary diagnostic assay in MDS patients with ringed sideroblasts. Leukemia Research, 2017, 56, 82-87.	0.8	4
33	Hyperdiploidy as a rare event that accompanies poor prognosis markers in <scp>CLL</scp> . European Journal of Haematology, 2017, 98, 142-148.	2.2	4
34	1q23.1 homozygous deletion and downregulation of Fc receptor-like family genes confer poor prognosis in chronic lymphocytic leukemia. Clinical and Experimental Medicine, 2019, 19, 261-267.	3.6	4
35	Genetic Determinants of Venetoclax Resistance in Lymphoid Malignancies. Blood, 2018, 132, 893-893.	1.4	4
36	<i>RPS15</i> and <i>TP53</i> Co-Mutation Drives B Cell Malignancy through Altered Translation and MYC Activation in a Murine Model. Blood, 2020, 136, 28-29.	1.4	4

#	Article	IF	Citations
37	MCL-1 and PKA/AMPK Axis Fuel Venetoclax Resistance in Lymphoid Cancers. Blood, 2019, 134, 1284-1284.	1.4	3
38	<i>TRAF3</i> alterations are frequent in delâ€3′ <scp>IGH</scp> chronic lymphocytic leukemia patients and define a specific subgroup with adverse clinical features. American Journal of Hematology, 2022, 97, 903-914.	4.1	3
39	Interrogation of Individual CLL Loss-of-Function Lesions By CRISPR In Vivo Editing Reveals Common and Unique Pathway Alterations. Blood, 2019, 134, 684-684.	1.4	2
40	Clinical and Biological Impact of TP53 Alterations in Del(11q) Chronic Lymphocytic Leukemia. Blood, 2020, 136, 6-7.	1.4	1
41	Multiplexed CRISPR <i>In Vivo</i> Editing of CLL Loss-of-Function Lesions Models Transformation of Chronic Lymphocytic Leukemia into Richter's Syndrome. Blood, 2020, 136, 2-3.	1.4	1
42	CRISPR/Cas9 in Chronic Lymphocytic Leukemia. Encyclopedia, 2022, 2, 928-936.	4.5	1
43	Patterns of Clonal Evolution Assessed By Whole Exome Sequencing during Progression from MDS to AML Are Related to Therapy. Blood, 2016, 128, 4309-4309.	1.4	O
44	Analysis of Clonal Evolution in Chronic Lymphocytic Leukemia from Inactive to Symptomatic Disease Prior Treatment Using Whole-Exome Sequencing. Blood, 2016, 128, 3206-3206.	1.4	0
45	Chronic Lymphocytic Leukemia Patients with IGH Rearrangements Are Characterized By a Distinct Genetic Landscape with Prognostic Implications. Blood, 2018, 132, 3129-3129.	1.4	O
46	Biological Impact of Monoallelic and Biallelic BIRC3 Loss in Del(11q) Chronic Lymphocytic Leukemia Progression. Blood, 2020, 136, 4-4.	1.4	0